Articles | Volume 6, issue 2
Wind Energ. Sci., 6, 389–408, 2021
https://doi.org/10.5194/wes-6-389-2021
Wind Energ. Sci., 6, 389–408, 2021
https://doi.org/10.5194/wes-6-389-2021

Research article 15 Mar 2021

Research article | 15 Mar 2021

Axial induction controller field test at Sedini wind farm

Ervin Bossanyi and Renzo Ruisi

Related subject area

Wind and turbulence
New methods to improve the vertical extrapolation of near-surface offshore wind speeds
Mike Optis, Nicola Bodini, Mithu Debnath, and Paula Doubrawa
Wind Energ. Sci., 6, 935–948, https://doi.org/10.5194/wes-6-935-2021,https://doi.org/10.5194/wes-6-935-2021, 2021
Short summary
Wind turbine load validation in wakes using wind field reconstruction techniques and nacelle lidar wind retrievals
Davide Conti, Vasilis Pettas, Nikolay Dimitrov, and Alfredo Peña
Wind Energ. Sci., 6, 841–866, https://doi.org/10.5194/wes-6-841-2021,https://doi.org/10.5194/wes-6-841-2021, 2021
Short summary
A pressure-driven atmospheric boundary layer model satisfying Rossby and Reynolds number similarity
Maarten Paul van der Laan, Mark Kelly, and Mads Baungaard
Wind Energ. Sci., 6, 777–790, https://doi.org/10.5194/wes-6-777-2021,https://doi.org/10.5194/wes-6-777-2021, 2021
Short summary
Design and analysis of a wake model for spatially heterogeneous flow
Alayna Farrell, Jennifer King, Caroline Draxl, Rafael Mudafort, Nicholas Hamilton, Christopher J. Bay, Paul Fleming, and Eric Simley
Wind Energ. Sci., 6, 737–758, https://doi.org/10.5194/wes-6-737-2021,https://doi.org/10.5194/wes-6-737-2021, 2021
Short summary
Evaluation of tilt control for wind-turbine arrays in the atmospheric boundary layer
Carlo Cossu
Wind Energ. Sci., 6, 663–675, https://doi.org/10.5194/wes-6-663-2021,https://doi.org/10.5194/wes-6-663-2021, 2021
Short summary

Cited articles

Ainslie, J. F.: Calculating the flowfield in the wake of wind turbines, J. Wind Eng. Indust. Aerodynam., 27, 213–224, 1988. 
Anderson, M.: Simplified solution to the eddy-viscosity wake model, RES technical report 01327 000202, Renewable Energy Systems Ltd., Hemel, Hempstead, 2009. 
Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, J. Fluid Mech., 806, 506–541, 2016. 
Bossanyi, E., Potenza, G., Calabretta, F., Bot, E., Kanev, S., Elorza, I., Campagnolo, F., Fortes-Plaza, A., Schreiber, J., Doekemeijer, B., Eguinoa-Erdozain, I., Gomez-Iradi, S., Astrain-Juangarcia, D., Cantero-Nouqueret, E., Irigoyen-Martinez, U., Fernandes-Correia, P., Benito, P., Kern, S., Kim, Y., Raach, S., Knudsen, T., and Schito, P.: Description of the reference and the control-oriented wind farm models, CL-Windcon deliverable D1.2, available at: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5ba664d11&appId=PPGMS, last access: 30 April 2018. 
Campagnolo, F., Petrovi, V., Bottasso, C. L., and Croce A. Wind tunnel testing of wake control strategies, in: Proc. American Control Conference (ACC), 6–8 July 2016, Boston, USA, 513–518, 2016a. 
Download
Short summary
This paper describes the design and field testing of a controller for reducing wake interactions on a wind farm. Reducing the power of some turbines weakens their wakes, allowing other turbines to produce more power so that the total wind farm power may increase. There have been doubts that this is feasible, but these field tests on a full-scale wind farm indicate that this goal has been achieved, also providing convincing validation of the model used for designing the controller.