Articles | Volume 6, issue 2
Wind Energ. Sci., 6, 539–554, 2021
Wind Energ. Sci., 6, 539–554, 2021

Research article 21 Apr 2021

Research article | 21 Apr 2021

Feature selection techniques for modelling tower fatigue loads of a wind turbine with neural networks

Artur Movsessian et al.

Related subject area

Design methods, reliability and uncertainty modelling
Aeroelastic loads on a 10 MW turbine exposed to extreme events selected from a year-long large-eddy simulation over the North Sea
Gerard Schepers, Pim van Dorp, Remco Verzijlbergh, Peter Baas, and Harmen Jonker
Wind Energ. Sci., 6, 983–996,,, 2021
Short summary
Optimal scheduling of the next preventive maintenance activity for a wind farm
Quanjiang Yu, Michael Patriksson, and Serik Sagitov
Wind Energ. Sci., 6, 949–959,,, 2021
Short summary
A method for preliminary rotor design – Part 1: Radially Independent Actuator Disc model
Kenneth Loenbaek, Christian Bak, Jens I. Madsen, and Michael McWilliam
Wind Energ. Sci., 6, 903–915,,, 2021
Short summary
A method for preliminary rotor design – Part 2: Wind turbine Optimization with Radial Independence
Kenneth Loenbaek, Christian Bak, and Michael McWilliam
Wind Energ. Sci., 6, 917–933,,, 2021
Short summary
Wind farm layout optimization using pseudo-gradients
Erik Quaeghebeur, René Bos, and Michiel B. Zaaijer
Wind Energ. Sci., 6, 815–839,,, 2021
Short summary

Cited articles

Boslaugh, S. and Watters, P. A.: Statistics in a Nutshell by Sarah Boslaugh and Paul Andrew Watters, Copyright © 2008 Sarah Boslaugh, O'Reilly Media, Inc., Sebastopol, CA, USA, 2008. 
Cosack, N.: Fatigue Load Monitoring with Standard Wind Turbine Signals, University of Stuttgart, Stuttgart, available at: (last access: 15 June 2019), 2010. 
Cosack, N. and Kühn, M.: Ueberwachung von Belastungen an Windenergieanlagen durch Analyse von Standardsignalen.pdf, in: AKIDA Tagungsband, 6. Aachener Kolloquium für Instandhaltung, Diagnose und Anlagenüberwachung, 14–15 November 2006, Aachen, 277–283., 2006. 
Cosack, N. and Kühn, M.: Prognose von Ermüdungslasten an Windenergieanlagen mittels Standardsignalen und neuronaler Netze.pdf, in: DMK 2007 – Dresdner Maschinenelemente Kolloquium: 5 and 6 December 2007, Dresden, 461–476, 2007. 
DNV/Risø: Guidelines for Design of Wind Turbines, 2nd Edn., Jydsk Centraltrykkeri, Denmark, 2002. 
Short summary
The assessment of the structural condition and technical lifetime extension of a wind turbine is challenging due to lack of information for the estimation of fatigue loads. This paper demonstrates the modelling of damage-equivalent loads of the fore–aft bending moments of a wind turbine tower, highlighting the advantage of using the neighbourhood component analysis. This feature selection technique is compared to correlation analysis, stepwise regression, and principal component analysis.