Articles | Volume 7, issue 3
https://doi.org/10.5194/wes-7-1321-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-1321-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of the wind field at the complex-terrain site Perdigão on the surface pressure fluctuations of a wind turbine
Florian Wenz
CORRESPONDING AUTHOR
University of Stuttgart, Institute of Aerodynamics and Gas Dynamics (IAG), Pfaffenwaldring 21, 70569 Stuttgart, Germany
Judith Langner
Wobben Research and Development GmbH, Site Analytics and Meteorology, Teerhof 59, 28199 Bremen, Germany
Thorsten Lutz
University of Stuttgart, Institute of Aerodynamics and Gas Dynamics (IAG), Pfaffenwaldring 21, 70569 Stuttgart, Germany
Ewald Krämer
University of Stuttgart, Institute of Aerodynamics and Gas Dynamics (IAG), Pfaffenwaldring 21, 70569 Stuttgart, Germany
Related authors
No articles found.
Pascal Weihing, Marion Cormier, Thorsten Lutz, and Ewald Krämer
Wind Energ. Sci., 9, 933–962, https://doi.org/10.5194/wes-9-933-2024, https://doi.org/10.5194/wes-9-933-2024, 2024
Short summary
Short summary
This study evaluates different approaches to simulate the near-wake flow of a wind turbine. The test case is in off-design conditions of the wind turbine, where the flow is separated from the blades and therefore very difficult to predict. The evaluation of simulation techniques is key to understand their limitations and to deepen the understanding of the near-wake physics. This knowledge can help to derive new wind farm design methods for yield-optimized farm layouts.
Ferdinand Seel, Thorsten Lutz, and Ewald Krämer
Wind Energ. Sci., 8, 1369–1385, https://doi.org/10.5194/wes-8-1369-2023, https://doi.org/10.5194/wes-8-1369-2023, 2023
Short summary
Short summary
Vortex generators are evaluated on a 2 MW wind turbine rotor blade by computational fluid dynamic methods. Those devices delay flow separation on the airfoils and thus increase their efficiency. On the wind turbine blade, rotational phenomena (e.g. rotational augmentation) appear and interact with the vortices from the vortex generators. The understanding of those interactions is crucial in order to optimise the placement of the vortex generators and evaluate their real efficiency on the blade.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Pradip Zamre and Thorsten Lutz
Wind Energ. Sci., 7, 1661–1677, https://doi.org/10.5194/wes-7-1661-2022, https://doi.org/10.5194/wes-7-1661-2022, 2022
Short summary
Short summary
To get more insight into the influence of the urban-terrain flow on the performance of the rooftop-mounted two-bladed Darrieus vertical-axis wind turbine, scale resolving simulations are performed for a generic wind turbine in realistic terrain under turbulent conditions. It is found that the turbulence and skewed nature of the flow near rooftop locations have a positive impact on the performance of the wind turbine.
Patrick Letzgus, Giorgia Guma, and Thorsten Lutz
Wind Energ. Sci., 7, 1551–1573, https://doi.org/10.5194/wes-7-1551-2022, https://doi.org/10.5194/wes-7-1551-2022, 2022
Short summary
Short summary
The research article presents the results of a study of highly resolved numerical simulations of a wind energy test site in complex terrain that is currently under construction in the Swabian Alps in southern Germany. The numerical results emphasised the importance of considering orography, vegetation, and thermal stratification in numerical simulations to resolve the wind field decently. In this way, the effects on loads, power, and wake of the wind turbine can also be predicted well.
Giorgia Guma, Philipp Bucher, Patrick Letzgus, Thorsten Lutz, and Roland Wüchner
Wind Energ. Sci., 7, 1421–1439, https://doi.org/10.5194/wes-7-1421-2022, https://doi.org/10.5194/wes-7-1421-2022, 2022
Short summary
Short summary
Wind turbine aeroelasticity is becoming more and more important because turbine sizes are increasingly leading to more slender blades. On the other hand, complex terrains are of interest because they are far away from urban areas. These regions are characterized by low velocities and high turbulence and are mostly influenced by the presence of forest, and that is why it is necessary to develop high-fidelity tools to correctly simulate the wind turbine's response.
Giorgia Guma, Galih Bangga, Thorsten Lutz, and Ewald Krämer
Wind Energ. Sci., 6, 93–110, https://doi.org/10.5194/wes-6-93-2021, https://doi.org/10.5194/wes-6-93-2021, 2021
Short summary
Short summary
With the increase in installed wind capacity, the rotor diameter of wind turbines is becoming larger and larger, and therefore it is necessary to take aeroelasticity into consideration. At the same time, wind turbines are in reality subjected to atmospheric inflow leading to high wind instabilities and fluctuations. Within this work, a high-fidelity chain is used to analyze the effects of both by the use of models of the same turbine with increasing complexity and technical details.
Simone Mancini, Koen Boorsma, Marco Caboni, Marion Cormier, Thorsten Lutz, Paolo Schito, and Alberto Zasso
Wind Energ. Sci., 5, 1713–1730, https://doi.org/10.5194/wes-5-1713-2020, https://doi.org/10.5194/wes-5-1713-2020, 2020
Short summary
Short summary
This work characterizes the unsteady aerodynamic response of a scaled version of a 10 MW floating wind turbine subjected to an imposed platform motion. The focus has been put on the simple yet significant motion along the wind's direction (surge). For this purpose, different state-of-the-art aerodynamic codes have been used, validating the outcomes with detailed wind tunnel experiments. This paper sheds light on floating-turbine unsteady aerodynamics for a more conscious controller design.
Cited articles
Adib, J., Langner, J., Alletto, M., Akbarzadeh, S., Kassem, H., and Steinfeld, G.: On the necessity of automatic calibration for CFD based wind resource assessment, ResearchGate, https://doi.org/10.13140/RG.2.2.19259.54560, 2021. a
Arnold, M., Wenz, F., Kühn, T., Lutz, T., and Altmikus, A.: Integration
of system level CFD simulations into the development process of wind turbine
prototypes, J. Phys.: Conf. Ser., 1618, 052007, https://doi.org/10.1088/1742-6596/1618/5/052007, 2020. a, b
Batham, J.: Pressure distributions on circular cylinders at critical Reynolds
numbers, J. Fluid Mech., 57, 209–228, https://doi.org/10.1017/S0022112073001114, 1973. a
Bechmann, A. and Sørensen, N. N.: Hybrid RANS/LES method for wind flow over complex terrain, Wind Energy, 13, 36–50, https://doi.org/10.1002/we.346, 2010. a
Belcher, S. E. and Hunt, J. C.: Turbulent flow over hills and waves, Annu.
Rev. Fluid Mech., 30, 507–538, https://doi.org/10.1146/annurev.fluid.30.1.507, 1998. a, b
Bruun, H. H. and Davies, P. O.: An experimental investigation of the unsteady
pressure forces on a circular cylinder in a turbulent cross flow, J. Sound Vibrat., 40, 535–559, https://doi.org/10.1016/S0022-460X(75)80062-9, 1975. a
Fernando, H. J., Mann, J., Palma, J. M., Lundquist, J. K., Barthelmie, R. J.,
Belo-Pereira, M., Brown, W. O., Chow, F. K., Gerz, T., Hocut, C. M., Klein,
P. M., Leo, L. S., Matos, J. C., Oncley, S. P., Pryor, S. C., Bariteau, L.,
Bell, T. M., Bodini, N., Carney, M. B., Courtney, M. S., Creegan, E. D.,
Dimitrova, R., Gomes, S., Hagen, M., Hyde, J. O., Kigle, S., Krishnamurthy,
R., Lopes, J. C., Mazzaro, L., Neher, J. M., Menke, R., Murphy, P., Oswald,
L., Otarola-Bustos, S., Pattantyus, A. K., Veiga Rodrigues, C., Schady, A.,
Sirin, N., Spuler, S., Svensson, E., Tomaszewski, J., Turner, D. D., Van Veen, L., Vasiljevic, N., Vassallo, D., Voss, S., Wildmann, N., and Wang,
Y.: The Perdigao: Peering into microscale details of mountain winds, B. Am. Meteorol. Soc., 100, 799–820, https://doi.org/10.1175/BAMS-D-17-0227.1, 2019. a, b
Gómez, A., Seume, J. R., and Hannover, D.: Load pulses on wind turbine
structures caused by tower interference, Wind Eng., 33, 555–570,
https://doi.org/10.1260/0309-524x.33.6.555, 2009. a
Gritskevich, M. S., Garbaruk, A. V., and Menter, F. R.: Fine-tuning of DDES
and IDDES formulations to the k–ω shear stress transport model,
Prog. Flight Phys., 5, 23–42, https://doi.org/10.1051/eucass/201305023, 2013.
a
Guma, G., Bangga, G., Lutz, T., and Krämer, E.: Aeroelastic analysis of
wind turbines under turbulent inflow conditions, Wind Energ. Sci., 6,
93–110, https://doi.org/10.5194/wes-6-93-2021, 2021. a
Horvath, T. J., Jones, G. S., and Stainback, P. C.: Coherent shedding from a
circular cylinder at critical, supercritical, and transcritical reynolds
numbers, SAE Technical Papers, 95, 1123–1142, https://doi.org/10.4271/861768, 1986. a, b
IEC 61400-1: Wind turbines – Part 1: Design requirements, International
Electrotechnical Commission, 2019. a
Johansson, J., Andersen, M. S., Christensen, S. S., Ingólfsson, K., and
Karistensen, L. A.: Vortex Shedding from Tapered Cylinders at high Reynolds
Numbers, in: 14th International conference on wind engineering, 21–27 June 2015, Porto Alegre, Brazil, 1–10, 2015. a
Jones Jr., G. W.: Unsteady lift forces generated by vortex shedding about a
large, stationary, and osciliating cylinder at high Reynolds numbers, NASA
Langley Research Center, https://ntrs.nasa.gov/citations/19680024854
(last access: 26 June 2022), 1968. a
Kim, Y., Weihing, P., Schulz, C., and Lutz, T.: Do turbulence models
deteriorate solutions using a non-oscillatory scheme?, J. Wind Eng. Indust. Aerodynam., 156, 41–49, https://doi.org/10.1016/j.jweia.2016.07.003, 2016. a, b
Kowarsch, U., Keßler, M., and Krämer, E.: High order CFD-simulation
of the rotor-fuselage interaction, in: 39th European Rotorcraft Forum,
3–6 September 2013, Moscow, ISBN 9781510810075, 2013. a
Kroll, N., Rossow, C. C., Becker, K., and Thiele, F.: The MEGAFLOW project,
Aerosp. Sci. Technol., 4, 223–237, https://doi.org/10.1016/S1270-9638(00)00131-0, 2000. a
Lalic, B. and Mihailovic, D. T.: An empirical relation describing leaf-area
density inside the forest for environmental modeling, J. Appl. Meteorol., 43, 641–645, https://doi.org/10.1175/1520-0450(2004)043<0641:AERDLD>2.0.CO;2, 2004. a, b
Leschziner, M.: Statistical turbulence modelling for fluid dynamics –
Demystified, Imperial College Press, https://doi.org/10.1142/p997, 2015. a
Letzgus, P., Lutz, T., and Krämer, E.: Detached eddy simulations of the
local atmospheric flow field within a forested wind energy test site located
in complex terrain, J. Phys.: Conf. Ser., 1037, 072043, https://doi.org/10.1088/1742-6596/1037/7/072043, 2018. a, b
Luhmann, B., Seyedin, H., and Cheng, P. W.: Aero-structural dynamics of a
flexible hub connection for load reduction on two-bladed wind turbines, Wind
Energy, 20, 521–535, https://doi.org/10.1002/we.2020, 2017. a
Mann, J.: The Spatial Structure of Neutral Atmospheric Surface-Layer
Turbulence, J. Fluid Mech., 273, 141–168, https://doi.org/10.1017/S0022112094001886, 1994. a
Mann, J.: Wind field simulation, Probabil. Eng. Mech., 13, 269–282, https://doi.org/10.1016/s0266-8920(97)00036-2, 1998. a
Mann, J., Angelou, N., Arnqvist, J., Callies, D., Cantero, E., Chávez Arroyo, R., Courtney, M., Cuxart, J., Dellwik, E., Gottschall, J., Ivanell, S., Kühn, P., Lea, G., Matos, J. C., Palma, J. M., Pauscher, L.,
Peña, A., Sanz Rodrigo, J., Söderberg, S., Vasiljevic, N.,
Veiga Rodrigues, C., Vasiljević, N., and Veiga Rodrigues, C.: Complex terrain experiments in the New European Wind Atlas, Philos. T. Roy. Soc. A, 375, 20160101, https://doi.org/10.1098/rsta.2016.0101, 2017. a, b
McCullough, G. B., Nitzberg, G. E., and Kelly, J. A.: Preliminary
investigation of the delay of turbulent flow separation by means of
wedge-shaped bodies, National Advisory Committee for Aeronautics, http://hdl.handle.net/2060/19930086472 (last access: 26 June 2022), 1951. a
Menke, R., Vasiljević, N., Wagner, J., Oncley, S. P., and Mann, J.: Multi-lidar wind resource mapping in complex terrain, Wind Energ. Sci., 5, 1059–1073, https://doi.org/10.5194/wes-5-1059-2020, 2020. a
Olsen, B. T.: Mesoscale to microscale coupling for determining site conditions in complex terrain, PhD thesis, DTU, https://doi.org/10.11581/00000036, 2018. a
Palma, J. M., Silva, C. A., Gomes, V. C., Silva Lopes, A., Simões, T.,
Costa, P., and Batista, V. T.: The digital terrain model in the computational modelling of the flow over the Perdigão site: The appropriate grid size, Wind Energ. Sci., 5, 1469–1485, https://doi.org/10.5194/wes-5-1469-2020, 2020. a, b, c, d, e, f, g
Roache, P. J.: Perspective: A Method for Uniform Reporting of Grid Refinement
Studies, J. Fluid Eng., 116, 405–413, https://doi.org/10.1115/1.2910291, 1994. a
Rodríguez, I., Lehmkuhl, O., Chiva, J., Borrell, R., and Oliva, A.: On
the flow past a circular cylinder from critical to super-critical Reynolds
numbers: Wake topology and vortex shedding, Int. J. Heat Fluid Flow, 55, 91–103, https://doi.org/10.1016/j.ijheatfluidflow.2015.05.009, 2015. a
Salim Dar, A., Berg, J., Troldborg, N., and Patton, E. G.: On the
self-similarity of wind turbine wakes in a complex terrain using large eddy
simulation, Wind Energ. Sci., 4, 633–644, https://doi.org/10.5194/wes-4-633-2019, 2019. a
Schulz, C., Klein, L., Weihing, P., and Lutz, T.: Investigations into the
interaction of a wind turbine with atmospheric turbulence in complex terrain,
J. Phys.: Conf. Ser., 753, 032016, https://doi.org/10.1088/1742-6596/753/3/032016, 2016. a, b, c
Shaw, R. H. and Schumann, U.: Large-eddy simulation of turbulent flow above
and within a forest, Bound.-Lay. Meteorol., 61, 47–64, https://doi.org/10.1007/BF02033994, 1992. a, b
Sogachev, A., Kelly, M., and Leclerc, M. Y.: Consistent two-equation closure
modelling for atmospheric research: Buoyancy and vegetation implementations,
Bound.-Lay. Meteorol., 145, 307–327, https://doi.org/10.1007/s10546-012-9726-5, 2012. a
Sørensen, N. N. and Schreck, S.: Transitional DDES computations of the NREL phase-VI rotor in axial flow conditions, J. Phys.: Conf. Ser., 555, 012096, https://doi.org/10.1088/1742-6596/555/1/012096, 2014. a, b
Spalart, P. R.: Young-Person's guide to Detached-Eddy simulation grids, NASA
Technical Note 211032, 1003–1008,
http://dl.acm.org/citation.cfm?id=886734 (last access: 26 June 2022), 2001. a
Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K., and
Travin, A.: A new version of detached-eddy simulation, resistant to
ambiguous grid densities, Theor. Comput. Fluid Dynam., 20, 181–195, https://doi.org/10.1007/s00162-006-0015-0, 2006. a
Troldborg, N., Sørensen, J. N., Mikkelsen, R., and Sørensen, N. N.: A
simple atmospheric boundary layer model applied to large eddy simulations of
wind turbine wakes, Wind Energy, 17, 657–669, https://doi.org/10.1002/we.1608, 2014. a
UCAR/NCAR: NCAR/EOL quality controlled high-rate ISFS surface flux data,
geographic coordinate, tilt corrected, Version 1.1, UCAR/NCAR [data set],
https://doi.org/10.26023/8X1N-TCT4-P50X, 2019b. a, b
Vasiljević, N., Palma, J. M., Angelou, N., Matos, J. C., Menke, R., Lea,
G., Mann, J., Courtney, M., Frölen Ribeiro, L., and Gomes, V. M.:
Perdigaõ 2015: Methodology for atmospheric multi-Doppler lidar experiments, Atmos. Meas. Tech., 10, 3463–3483,
https://doi.org/10.5194/amt-10-3463-2017, 2017.
a
Vassberg, J. C., Tinoco, E. N., Mani, M., Brodersen, O. P., Eisfeld, B., Wahls, R. A., Morrison, J. H., Zickuhr, T., Laflin, K. R., and Mavriplis, D. J.: Abridged summary of the third AIAA computational fluid dynamics drag
prediction workshop, J. Aircraft, 45, 781–798, https://doi.org/10.2514/1.30572, 2008. a
Wagner, J., Gerz, T., Wildmann, N., and Gramitzky, K.: Long-term simulation of the boundary layer flow over the double-ridge site during the Perdigão 2017 field campaign, Atmos. Chem. Phys., 19, 1129–1146,
https://doi.org/10.5194/acp-19-1129-2019, 2019. a, b
Weihing, P., Letzgus, J., Bangga, G., Lutz, T., and Krämer, E.: Hybrid
RANS/LES capabilities of the flow solver FLOWer – Application to flow
around wind turbines, in: Progress in Hybrid RANS-LES Modelling, Springer International Publishing, 369–380, https://doi.org/10.1007/978-3-319-70031-1_31, 2018. a, b, c
Wildmann, N., Kigle, S., and Gerz, T.: Coplanar lidar measurement of a single
wind energy converter wake in distinct atmospheric stability regimes at the
Perdigao 2017 experiment, J. Phys.: Conf. Ser., 1037, 052006, https://doi.org/10.1088/1742-6596/1037/5/052006, 2018. a
Yauwenas, Y.: Numerical simulation of blade-tower interaction noise, PhD thesis, University of New South Wales, Australia, https://doi.org/10.26190/unsworks/19934, 2017. a
Short summary
To get a better understanding of the influence of the terrain flow on the unsteady pressure distributions on the wind turbine surface, a fully resolved turbine was simulated in the complex terrain of Perdigão, Portugal. It was found that the pressure fluctuations at the tower caused by vortex shedding are significantly hampered by the terrain flow, while the pressure fluctuations caused by the blade–tower interaction are hardly changed.
To get a better understanding of the influence of the terrain flow on the unsteady pressure...
Altmetrics
Final-revised paper
Preprint