Articles | Volume 7, issue 1
https://doi.org/10.5194/wes-7-345-2022
https://doi.org/10.5194/wes-7-345-2022
Research article
 | 
09 Feb 2022
Research article |  | 09 Feb 2022

Optimal closed-loop wake steering – Part 2: Diurnal cycle atmospheric boundary layer conditions

Michael F. Howland, Aditya S. Ghate, Jesús Bas Quesada, Juan José Pena Martínez, Wei Zhong, Felipe Palou Larrañaga, Sanjiva K. Lele, and John O. Dabiri

Related authors

Joint Yaw-Induction Control Optimization for Wind Farms
Kirby S. Heck, Jaime Liew, Ilan M. L. Upfal, and Michael F. Howland
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-90,https://doi.org/10.5194/wes-2025-90, 2025
Preprint under review for WES
Short summary
Annual wake impacts in and between wind farm clusters modelled by a mesoscale numerical weather prediction model and fast-running engineering models
Sara Porchetta, Michael F. Howland, Ruben Borgers, Sophia Buckingham, and Wim Munters
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-58,https://doi.org/10.5194/wes-2024-58, 2024
Revised manuscript has not been submitted
Short summary
The curled wake model: a three-dimensional and extremely fast steady-state wake solver for wind plant flows
Luis A. Martínez-Tossas, Jennifer King, Eliot Quon, Christopher J. Bay, Rafael Mudafort, Nicholas Hamilton, Michael F. Howland, and Paul A. Fleming
Wind Energ. Sci., 6, 555–570, https://doi.org/10.5194/wes-6-555-2021,https://doi.org/10.5194/wes-6-555-2021, 2021
Short summary
Optimal closed-loop wake steering – Part 1: Conventionally neutral atmospheric boundary layer conditions
Michael F. Howland, Aditya S. Ghate, Sanjiva K. Lele, and John O. Dabiri
Wind Energ. Sci., 5, 1315–1338, https://doi.org/10.5194/wes-5-1315-2020,https://doi.org/10.5194/wes-5-1315-2020, 2020
Short summary

Cited articles

Abkar, M. and Porté-Agel, F.: Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study, Phys. Fluids, 27, 035104, https://doi.org/10.1063/1.4913695, 2015. a, b, c
Abkar, M., Sharifi, A., and Porté-Agel, F.: Wake flow in a wind farm during a diurnal cycle, J. Turbul., 17, 420–441, 2016. a, b
Allaerts, D. and Meyers, J.: Large eddy simulation of a large wind-turbine array in a conventionally neutral atmospheric boundary layer, Phys. Fluids, 27, 065108, https://doi.org/10.1063/1.4922339, 2015. a
Annoni, J., Bay, C., Johnson, K., Dall'Anese, E., Quon, E., Kemper, T., and Fleming, P.: Wind direction estimation using SCADA data with consensus-based optimization, Wind Energ. Sci., 4, 355–368, https://doi.org/10.5194/wes-4-355-2019, 2019. a
Atkinson, B. and Wu Zhang, J.: Mesoscale shallow convection in the atmosphere, Rev. Geophys., 34, 403–431, 1996. a
Short summary
Wake steering control, in which turbines are intentionally misaligned with the incident wind, has demonstrated potential to increase wind farm energy. We investigate wake steering control methods in simulations of a wind farm operating in the terrestrial diurnal cycle. We develop a statistical wind direction forecast to improve wake steering in flows with time-varying states. Closed-loop wake steering control increases wind farm energy production, compared to baseline and open-loop control.
Share
Altmetrics
Final-revised paper
Preprint