Articles | Volume 9, issue 10
https://doi.org/10.5194/wes-9-1905-2024
https://doi.org/10.5194/wes-9-1905-2024
Research article
 | 
08 Oct 2024
Research article |  | 08 Oct 2024

Influences of lidar scanning parameters on wind turbine wake retrievals in complex terrain

Rachel Robey and Julie K. Lundquist

Related authors

Behavior and mechanisms of Doppler wind lidar error in varying stability regimes
Rachel Robey and Julie K. Lundquist
Atmos. Meas. Tech., 15, 4585–4622, https://doi.org/10.5194/amt-15-4585-2022,https://doi.org/10.5194/amt-15-4585-2022, 2022
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Characterization of local wind profiles: a random forest approach for enhanced wind profile extrapolation
Farkhondeh (Hanie) Rouholahnejad and Julia Gottschall
Wind Energ. Sci., 10, 143–159, https://doi.org/10.5194/wes-10-143-2025,https://doi.org/10.5194/wes-10-143-2025, 2025
Short summary
Simulations suggest offshore wind farms modify low-level jets
Daphne Quint, Julie K. Lundquist, and David Rosencrans
Wind Energ. Sci., 10, 117–142, https://doi.org/10.5194/wes-10-117-2025,https://doi.org/10.5194/wes-10-117-2025, 2025
Short summary
On the lidar-turbulence paradox and possible countermeasures
Alfredo Peña, Ginka G. Yankova, and Vasiliki Mallini
Wind Energ. Sci., 10, 83–102, https://doi.org/10.5194/wes-10-83-2025,https://doi.org/10.5194/wes-10-83-2025, 2025
Short summary
The actuator farm model for large eddy simulation (LES) of wind-farm-induced atmospheric gravity waves and farm–farm interaction
Sebastiano Stipa, Arjun Ajay, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 2301–2332, https://doi.org/10.5194/wes-9-2301-2024,https://doi.org/10.5194/wes-9-2301-2024, 2024
Short summary
Understanding the impact of data gaps on long-term offshore wind resource estimates
Martin Georg Jonietz Alvarez, Warren Watson, and Julia Gottschall
Wind Energ. Sci., 9, 2217–2233, https://doi.org/10.5194/wes-9-2217-2024,https://doi.org/10.5194/wes-9-2217-2024, 2024
Short summary

Cited articles

Aitken, M. L. and Lundquist, J. K.: Utility-Scale Wind Turbine Wake Characterization Using Nacelle-Based Long-Range Scanning Lidar, J. Atmos. Ocean. Tech., 31, 1529–1539, https://doi.org/10.1175/JTECH-D-13-00218.1, 2014. a, b
Aitken, M. L., Rhodes, M. E., and Lundquist, J. K.: Performance of a Wind-Profiling Lidar in the Region of Wind Turbine Rotor Disks, J. Atmos. Ocean. Tech., 29, 347–355, https://doi.org/10.1175/JTECH-D-11-00033.1, 2012. a
Aitken, M. L., Banta, R. M., Pichugina, Y. L., and Lundquist, J. K.: Quantifying Wind Turbine Wake Characteristics from Scanning Remote Sensor Data, J. Atmos. Ocean. Tech., 31, 765–787, https://doi.org/10.1175/JTECH-D-13-00104.1, 2014. a, b, c
Amidror, I.: Scattered Data Interpolation Methods for Electronic Imaging Systems: A Survey, J. Electron. Imaging, 11, 157–176, https://doi.org/10.1117/1.1455013, 2002. a
Arthur, R. S., Mirocha, J. D., Marjanovic, N., Hirth, B. D., Schroeder, J. L., Wharton, S., and Chow, F. K.: Multi-Scale Simulation of Wind Farm Performance during a Frontal Passage, Atmosphere, 11, 245, https://doi.org/10.3390/atmos11030245, 2020. a
Download
Short summary
Measurements of wind turbine wakes with scanning lidar instruments contain complex errors. We model lidars in a simulated environment to understand how and why the measured wake may differ from the true wake and validate the results with observational data. The lidar smooths out the wake, making it seem more spread out and the slowdown of the winds less pronounced. Our findings provide insights into best practices for accurately measuring wakes with lidar and interpreting observational data.
Altmetrics
Final-revised paper
Preprint