Articles | Volume 9, issue 2
https://doi.org/10.5194/wes-9-343-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-343-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An experimental study on the aerodynamic loads of a floating offshore wind turbine under imposed motions
Faculty of Aerospace Engineering, Delft University of Technology, Kluyerweg 1, 2629 HS Delft, the Netherlands
Felipe Novais
Department of Mechanical Engineering, Politecnico di Milano, Via La Masa 1, 20156 Milan, Italy
Maritime Research Institute Netherlands, Haagsteeg 2, 6708 PM, Wageningen, the Netherlands
Axelle Viré
Faculty of Aerospace Engineering, Delft University of Technology, Kluyerweg 1, 2629 HS Delft, the Netherlands
Related authors
Federico Taruffi, Shakthi Thinakaran, and Axelle Viré
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-100, https://doi.org/10.5194/wes-2025-100, 2025
Preprint under review for WES
Short summary
Short summary
Floating wind turbines are subject to complex aerodynamics, not yet fully understood. Lab-scale experiments are crucial for capturing these phenomena and validating numerical tools, but due to the different physics, this is difficult with traditional approaches. This paper presents a new, hybrid wind tunnel experimental setup capable of reproducing the coupled aerodynamic and motion response of floating wind turbines.
Federico Taruffi, Simone Di Carlo, Sara Muggiasca, and Marco Belloli
Wind Energ. Sci., 8, 71–84, https://doi.org/10.5194/wes-8-71-2023, https://doi.org/10.5194/wes-8-71-2023, 2023
Short summary
Short summary
The work focuses on the experimental validation of the design of a large-scale wind turbine model, based on the DTU 10 MW reference wind turbine, installed on a scaled multipurpose platform deployed in an outdoor natural laboratory. The aim of the validation is to assess whether the behaviour of the model respects the targets established during the design phase in terms of structure, rotor aerodynamics and control. The outcome of the investigation ensures the validity of the design process.
Federico Taruffi, Shakthi Thinakaran, and Axelle Viré
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-100, https://doi.org/10.5194/wes-2025-100, 2025
Preprint under review for WES
Short summary
Short summary
Floating wind turbines are subject to complex aerodynamics, not yet fully understood. Lab-scale experiments are crucial for capturing these phenomena and validating numerical tools, but due to the different physics, this is difficult with traditional approaches. This paper presents a new, hybrid wind tunnel experimental setup capable of reproducing the coupled aerodynamic and motion response of floating wind turbines.
Ricardo Amaral, Felix Houtin-Mongrolle, Dominic von Terzi, Kasper Laugesen, Paul Deglaire, and Axelle Viré
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-34, https://doi.org/10.5194/wes-2025-34, 2025
Manuscript not accepted for further review
Short summary
Short summary
This work uses simulations to investigate floating offshore wind turbines which have the potential to supply the world's electricity demand many times by 2040. In particular, the effect of the rotor motion on the wake was investigated by forcing the turbine to move under different motions and the results highlight differences between motions. While some motions led to a wake behavior that was close to that of a fixed-bottom turbine, other motions produced a remarkably different wake structure.
Deepali Singh, Erik Haugen, Kasper Laugesen, Richard P. Dwight, and Axelle Viré
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-24, https://doi.org/10.5194/wes-2025-24, 2025
Revised manuscript under review for WES
Short summary
Short summary
We developed a fast, probabilistic surrogate model to predict fatigue loads on floating wind turbines based on site conditions. Unlike traditional methods, our approach directly uses site data, avoiding complex binning or distribution fitting. Mixture density network is used to capture uncertainties and enables quick lifetime fatigue estimates.
Claudia Muscari, Paolo Schito, Axelle Viré, Alberto Zasso, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-149, https://doi.org/10.5194/wes-2024-149, 2025
Publication in WES not foreseen
Short summary
Short summary
This paper presents the findings of a study aimed at describing the flow system downstream of a wind turbine operated with a novel control technology. Results from heavy high-fidelity simulations are used to obtain a low-fidelity model that is quick enough to be used for the optimization of such technologies. Additionally, we were able to retrieve an improved understanding of the physics of such systems under different inflow conditions.
Shyam VimalKumar, Delphine De Tavernier, Dominic von Terzi, Marco Belloli, and Axelle Viré
Wind Energ. Sci., 9, 1967–1983, https://doi.org/10.5194/wes-9-1967-2024, https://doi.org/10.5194/wes-9-1967-2024, 2024
Short summary
Short summary
When standing still without a nacelle or blades, the vibrations on a wind turbine tower are of concern to its structural health. This study finds that the air which flows around the tower recirculates behind the tower, forming so-called wakes. These wakes initiate the vibration, and the movement itself causes the vibration to increase or decrease depending on the wind speed. The current study uses a methodology called force partitioning to analyse this in depth.
Deepali Singh, Richard Dwight, and Axelle Viré
Wind Energ. Sci., 9, 1885–1904, https://doi.org/10.5194/wes-9-1885-2024, https://doi.org/10.5194/wes-9-1885-2024, 2024
Short summary
Short summary
The selection of a suitable site for the installation of a wind turbine plays an important role in ensuring a safe operating lifetime of the structure. In this study, we show that mixture density networks can accelerate this process by inferring functions from data that can accurately map the environmental conditions to the loads but also propagate the uncertainty from the inflow to the response.
Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, https://doi.org/10.5194/wes-8-1659-2023, 2023
Short summary
Short summary
Simulations of different fidelities made by the participants of the OC6 project Phase III are compared to wind tunnel wake measurements on a floating wind turbine. Results in the near wake confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the reduced frequency exceeds 0.5. In the far wake, the impact of platform motion is overestimated by simulations and even seems to be oriented to the generation of a wake less prone to dissipation.
Alessandro Fontanella, Elio Daka, Felipe Novais, and Marco Belloli
Wind Energ. Sci., 8, 1351–1368, https://doi.org/10.5194/wes-8-1351-2023, https://doi.org/10.5194/wes-8-1351-2023, 2023
Short summary
Short summary
This study aims to enhance wind turbine modeling by incorporating industry-standard control functionalities. A control design framework was developed and applied to a 1 : 100 scale model of a large floating wind turbine. Wind tunnel tests confirmed the scaled turbine accurately reproduced the steady-state rotor speed, blade pitch, and thrust torque characteristics of the full-size turbine. However, challenges arose in simulating the turbine's aerodynamic response during above-rated operation.
Federico Taruffi, Simone Di Carlo, Sara Muggiasca, and Marco Belloli
Wind Energ. Sci., 8, 71–84, https://doi.org/10.5194/wes-8-71-2023, https://doi.org/10.5194/wes-8-71-2023, 2023
Short summary
Short summary
The work focuses on the experimental validation of the design of a large-scale wind turbine model, based on the DTU 10 MW reference wind turbine, installed on a scaled multipurpose platform deployed in an outdoor natural laboratory. The aim of the validation is to assess whether the behaviour of the model respects the targets established during the design phase in terms of structure, rotor aerodynamics and control. The outcome of the investigation ensures the validity of the design process.
Axelle Viré, Bruce LeBlanc, Julia Steiner, and Nando Timmer
Wind Energ. Sci., 7, 573–584, https://doi.org/10.5194/wes-7-573-2022, https://doi.org/10.5194/wes-7-573-2022, 2022
Short summary
Short summary
There is continuous effort to try and improve the aerodynamic performance of wind turbine blades. This work shows that adding a leading-edge slat to wind turbine blades can significantly enhance the aerodynamic performance of wind turbines, even more than with vortex generators (which are commonly used on commercial turbines). The findings are obtained through wind tunnel tests on different airfoil–slat combinations.
Carlos Ferreira, Wei Yu, Arianna Sala, and Axelle Viré
Wind Energ. Sci., 7, 469–485, https://doi.org/10.5194/wes-7-469-2022, https://doi.org/10.5194/wes-7-469-2022, 2022
Short summary
Short summary
Floating offshore wind turbines may experience large surge motions that, when faster than the local wind speed, cause rotor–wake interaction.
We derive a model which is able to predict the wind speed at the wind turbine, even for large and fast motions and load variations in the wind turbine.
The proposed dynamic inflow model includes an adaptation for highly loaded flow, and it is accurate and simple enough to be easily implemented in most blade element momentum design models.
Cited articles
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Nata-rajan, A., and Hansen, M. H.: Department of Wind Energy I – Report Description of the DTU 10 MW Reference Wind Turbine, https://backend.orbit.dtu.dk/ws/portalfiles/portal/55645274/The_DTU_10MW_Reference_Turbine_Christian_Bak.pdf (last access: 12 February 2024), 2013. a
Bayati, I., Belloli, M., Bernini, L., Fiore, E., Giberti, H., and Zasso, A.: On the functional design of the DTU 10 MW wind turbine scale model of LIFES 50+ project, J. Phys.: Conf. Ser., 753, 052018, https://doi.org/10.1088/1742-6596/753/5/052018, 2016a. a
Bayati, I., Belloli, M., Bernini, L., Mikkelsen, R., and Zasso, A.: On the aero-elastic design of the DTU 10 MW wind turbine blade for the LIFES50+ wind tunnel scale model, J. Phys.: Conf. Ser., 753, 022028, https://doi.org/10.1088/1742-6596/753/2/022028, 2016b. a, b, c
Bayati, I., Belloli, M., Bernini, L., and Zasso, A.: Wind tunnel validation of AeroDyn within LIFES50+ project: imposed Surge and Pitch tests, J. Phys.: Conf. Ser., 753, 092001, https://doi.org/10.1088/1742-6596/753/9/092001, 2016c. a
Bayati, I., Belloli, M., Bernini, L., Boldrin, D., Boorsma, K., Caboni, M., Cormier, M., Mikkelsen, R., Lutz, T., and Zasso, A.: UNAFLOW project: UNsteady Aerodynamics of FLOating Wind turbines, J. Phys.: Conf. Ser., 1037, 072037, https://doi.org/10.1088/1742-6596/1037/7/072037, 2018a. a
Bayati, I., Facchinetti, A., Fontanella, A., Giberti, H., and Belloli, M.: A wind tunnel/HIL setup for integrated tests of Floating Offshore Wind Turbines, J. Phys.: Conf. Ser., 1037, 052025, https://doi.org/10.1088/1742-6596/1037/5/052025, 2018b. a
Bergua, R., Robertson, A., Jonkman, J., Branlard, E., Fontanella, A., Belloli, M., Schito, P., Zasso, A., Persico, G., Sanvito, A., Amet, E., Brun, C., Campaña Alonso, G., Martín-San-Román, R., Cai, R., Cai, J., Qian, Q., Maoshi, W., Beardsell, A., Pirrung, G., Ramos-García, N., Shi, W., Fu, J., Corniglion, R., Lovera, A., Galván, J., Nygaard, T. A., dos Santos, C. R., Gilbert, P., Joulin, P.-A., Blondel, F., Frickel, E., Chen, P., Hu, Z., Boisard, R., Yilmazlar, K., Croce, A., Harnois, V., Zhang, L., Li, Y., Aristondo, A., Mendikoa Alonso, I., Mancini, S., Boorsma, K., Savenije, F., Marten, D., Soto-Valle, R., Schulz, C. W., Netzband, S., Bianchini, A., Papi, F., Cioni, S., Trubat, P., Alarcon, D., Molins, C., Cormier, M., Brüker, K., Lutz, T., Xiao, Q., Deng, Z., Haudin, F., and Goveas, A.: OC6 project Phase III: validation of the aerodynamic loading on a wind turbine rotor undergoing large motion caused by a floating support structure, Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, 2023. a, b
Bredmose, H., Lemmer, F., Borg, M., Pegalajar-Jurado, A., Mikkelsen, R., Larsen, T. S., Fjelstrup, T., Yu, W., Lomholt, A., Boehm, L., and Armendariz, J. A.: The Triple Spar campaign: Model tests of a 10 MW floating wind turbine with waves, wind and pitch control, Energ. Proced., 137, 58–76, https://doi.org/10.1016/j.egypro.2017.10.334, 2017. a
Ferreira, C., Yu, W., Sala, A., and Viré, A.: Dynamic inflow model for a floating horizontal axis wind turbine in surge motion, J. Phys.: Conf. Ser., 7, 469–485, https://doi.org/10.5194/wes-7-469-2022, 2022. a
Fontanella, A., Al, M., van der Hoek, D., Liu, Y., van Wingerden, J., and Belloli, M.: A control-oriented wave-excited linear model for offshore floating wind turbines, J. Phys.: Conf. Ser., 1618, 022038, https://doi.org/10.1088/1742-6596/1618/2/022038, 2020. a
Fontanella, A., Bayati, I., Mikkelsen, R., Belloli, M., and Zasso, A.: UNAFLOW: a holistic wind tunnel experiment about the aerodynamic response of floating wind turbines under imposed surge motion, Wind Energ. Sci., 6, 1169–1190, https://doi.org/10.5194/wes-6-1169-2021, 2021. a
Fontanella, A., Facchinetti, A., Di Carlo, S., and Belloli, M.: Wind tunnel investigation of the aerodynamic response of two 15 MW floating wind turbines, Wind Energ. Sci., 7, 1711–1729, https://doi.org/10.5194/wes-7-1711-2022, 2022. a
Fontanella, A., Da Pra, G., and Belloli, M.: Integrated Design and Experimental Validation of a Fixed-Pitch Rotor for Wind Tunnel Testing, Energies, 16, 2205, https://doi.org/10.3390/en16052205, 2023. a
Goupee, A. J., Koo, B., Lambrakos, K., and Kimball, R.: Model Tests for Three Floating Wind Turbine Concepts, All Days, in: Offshore Technology Conference, 30 April–3 May 2012, Houston, Texas, USA OTC-23470-MS, https://doi.org/10.4043/23470-MS, 2012. a
Goupee, A. J., Koo, B. J., Kimball, R. W., Lambrakos, K. F., and Dagher, H. J.: Experimental Comparison of Three Floating Wind Turbine Concepts, Jo. Offshore Mech. Arct. Eng., 136, 020906, https://doi.org/10.1115/1.4025804, 2014. a
Goupee, A. J., Kimball, R. W., and Dagher, H. J.: Experimental observations of active blade pitch and generator control influence on floating wind turbine response, Renew. Energy, 104, 9–19, https://doi.org/10.1016/j.renene.2016.11.062, 2017. a
Gueydon, S., Bayati, I., and de Ridder, E.: Discussion of solutions for basin model tests of FOWTs in combined waves and wind, Ocean Eng., 209, 107288, https://doi.org/10.1016/j.oceaneng.2020.107288, 2020. a
Jonkman, B. and Jonkman, J.: FAST v8.16.00a-bjj, https://www.nrel.gov/wind/nwtc/fastv8.html#:~:text=FAST v8.,transitioning from FAST to OpenFAST (last access: 12 February 2024), 2016. a
Kim, T., Madsen, F., Bredmose, H., and Pegalajar-Jurado, A.: Numerical analysis and comparison study of the 1:60 scaled DTU 10 MW TLP floating wind turbine, Renew. Energy, 202, 210–221, https://doi.org/10.1016/j.renene.2022.11.077, 2023. a
Lemmer, F.: Low-Order Modeling, Controller Design and Optimization of Floating Offshore Wind Turbines, PhD thesis, University of Stuttgart, Stuttgart, https://doi.org/10.18419/opus-10526, 2018. a
Mancini, S., Boorsma, K., Caboni, M., Cormier, M., Lutz, T., Schito, P., and Zasso, A.: Characterization of the unsteady aerodynamic response of a floating offshore wind turbine to surge motion, Wind Energ. Sci., 5, 1713–1730, https://doi.org/10.5194/wes-5-1713-2020, 2020. a, b
Meng, F., Lio, W. H., Pegalajar-Jurado, A., Pierella, F., Hofschulte, E. N., Santaya, A. G., and Bredmose, H.: Experimental study of floating wind turbine control on a TetraSub floater with tower velocity feedback gain, Renew. Energy, 205, 509–524, https://doi.org/10.1016/j.renene.2023.01.073, 2023. a
Muggiasca, S., Taruffi, F., Fontanella, A., Carlo, S. D., and Belloli, M.: Aerodynamic and structural strategies for the rotor design of a wind turbine scaled model, Energies, 14, 2119, https://doi.org/10.3390/en14082119, 2021. a
Pegalajar-Jurado, A., Borg, M., and Bredmose, H.: An efficient frequency-domain model for quick load analysis of floating offshore wind turbines, Wind Energ. Sci., 3, 693–712, https://doi.org/10.5194/wes-3-693-2018, 2018. a
Robertson, A. N., Jonkman, J. M., Goupee, A. J., Coulling, A. J., Prowell, I., Browning, J., Masciola, M. D., and Molta, P.: Summary of conclusions and recommendations drawn from the DeepCwind scaled floating offshore wind system test campaign, in: International Conference on Offshore Mechanics and Arctic Engineering, vol. 55423, 8–13 June 2013, American Society of Mechanical Engineers, V008T09A053, https://doi.org/10.1115/OMAE2013-10817, 2013. a
Schliffke, S., Aubrun, S., and Conan, B.: Wind Tunnel Study of a “Floating” Wind Turbine's Wake in an Atmospheric Boundary Layer with Imposed Characteristic Surge Motion, J. Phys.: Conf. Ser., 1618, 062015, https://doi.org/10.1088/1742-6596/1618/6/062015, 2020. a
van Kuik, G. A. M., Peinke, J., Nijssen, R., Lekou, D., Mann, J., Sørensen, J. N., Ferreira, C., van Wingerden, J. W., Schlipf, D., Gebraad, P., Polinder, H., Abrahamsen, A., van Bussel, G. J. W., Sørensen, J. D., Tavner, P., Bottasso, C. L., Muskulus, M., Matha, D., Lindeboom, H. J., Degraer, S., Kramer, O., Lehnhoff, S., Sonnenschein, M., Sørensen, P. E., Künneke, R. W., Morthorst, P. E., and Skytte, K.: Long-term research challenges in wind energy – a research agenda by the European Academy of Wind Energy, Wind Energ. Sci., 1, 1–39, https://doi.org/10.5194/wes-1-1-2016, 2016. a
Short summary
Floating wind turbines are subject to complex aerodynamics that are not yet fully understood. Lab-scale experiments are crucial for capturing these phenomena and validate numerical tools. This paper presents a new wind tunnel experimental setup able to study the response of a wind turbine rotor when subjected to prescribed motions in 6 degrees of freedom. The observed unsteady effects underscore the importance of pursuing research on the impact of floater motions on wind turbine performance.
Floating wind turbines are subject to complex aerodynamics that are not yet fully understood....
Altmetrics
Final-revised paper
Preprint