Articles | Volume 9, issue 2
https://doi.org/10.5194/wes-9-453-2024
https://doi.org/10.5194/wes-9-453-2024
Research article
 | 
27 Feb 2024
Research article |  | 27 Feb 2024

Aerodynamic model comparison for an X-shaped vertical-axis wind turbine

Adhyanth Giri Ajay, Laurence Morgan, Yan Wu, David Bretos, Aurelio Cascales, Oscar Pires, and Carlos Ferreira

Related authors

Effect of Blade Inclination Angle for Straight Bladed Vertical Axis Wind Turbines
Laurence Boyd Morgan, Abbas Kazemi Amiri, William Leithead, and James Carroll
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-42,https://doi.org/10.5194/wes-2024-42, 2024
Preprint under review for WES
Short summary
Aerodynamic characterisation of a thrust-scaled IEA 15 MW wind turbine model: Experimental insights using PIV data
Erik Fritz, André Ribeiro, Koen Boorsma, and Carlos Ferreira
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-3,https://doi.org/10.5194/wes-2024-3, 2024
Revised manuscript accepted for WES
Short summary
Experimental analysis of a horizontal axis wind turbine with swept blades using PIV data
Erik Fritz, Koen Boorsma, and Carlos Ferreira
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-11,https://doi.org/10.5194/wes-2024-11, 2024
Preprint under review for WES
Short summary
Nonlinear inviscid aerodynamics of a wind turbine rotor in surge, sway, and yaw motions using a free-wake panel method
André F. P. Ribeiro, Damiano Casalino, and Carlos S. Ferreira
Wind Energ. Sci., 8, 661–675, https://doi.org/10.5194/wes-8-661-2023,https://doi.org/10.5194/wes-8-661-2023, 2023
Short summary
Aerodynamic simulation of rough and eroded blades, AEP effect and mitigation using low drag vortex generators
David Bretos-Arguiñena and Beatriz Méndez-López
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-8,https://doi.org/10.5194/wes-2023-8, 2023
Revised manuscript not accepted
Short summary

Related subject area

Thematic area: Fluid mechanics | Topic: Wind turbine aerodynamics
Quantifying the impact of modeling fidelity on different substructure concepts – Part 2: Code-to-code comparison in realistic environmental conditions
Francesco Papi, Giancarlo Troise, Robert Behrens de Luna, Joseph Saverin, Sebastian Perez-Becker, David Marten, Marie-Laure Ducasse, and Alessandro Bianchini
Wind Energ. Sci., 9, 981–1004, https://doi.org/10.5194/wes-9-981-2024,https://doi.org/10.5194/wes-9-981-2024, 2024
Short summary
Wind turbine rotors in surge motion: new insights into unsteady aerodynamics of floating offshore wind turbines (FOWTs) from experiments and simulations
Christian W. Schulz, Stefan Netzband, Umut Özinan, Po Wen Cheng, and Moustafa Abdel-Maksoud
Wind Energ. Sci., 9, 665–695, https://doi.org/10.5194/wes-9-665-2024,https://doi.org/10.5194/wes-9-665-2024, 2024
Short summary
An insight into the capability of the actuator line method to resolve tip vortices
Pier Francesco Melani, Omar Sherif Mohamed, Stefano Cioni, Francesco Balduzzi, and Alessandro Bianchini
Wind Energ. Sci., 9, 601–622, https://doi.org/10.5194/wes-9-601-2024,https://doi.org/10.5194/wes-9-601-2024, 2024
Short summary
Aerodynamic characterisation of a thrust-scaled IEA 15 MW wind turbine model: Experimental insights using PIV data
Erik Fritz, André Ribeiro, Koen Boorsma, and Carlos Ferreira
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-3,https://doi.org/10.5194/wes-2024-3, 2024
Revised manuscript accepted for WES
Short summary
Development and application of a mesh generator intended for unsteady vortex-lattice method simulations of wind turbines and wind farms
Bruno A. Roccia, Luis R. Ceballos, Marcos L. Verstraete, and Cristian G. Gebhardt
Wind Energ. Sci., 9, 385–416, https://doi.org/10.5194/wes-9-385-2024,https://doi.org/10.5194/wes-9-385-2024, 2024
Short summary

Cited articles

Balduzzi, F., Bianchini, A., Maleci, R., Ferrara, G., and Ferrari, L.: Blade design criteria to compensate the flow curvature effects in h-darrieus wind turbines, J. Turbomach., 137, 1–10, https://doi.org/10.1115/1.4028245, 2014. a
Belabes, B. and Paraschivoiu, M.: CFD modeling of vertical-axis wind turbine wake interaction, T. Can. Soc. Mech. Eng., 47, 449–458, https://doi.org/10.1139/TCSME-2022-0149, 2023. a
Cheng, Z., Madsen, H. A., Gao, Z., and Moan, T.: Aerodynamic Modeling of Floating Vertical Axis Wind Turbines Using the Actuator Cylinder Flow Method, Enrgy. Proced., 94, 531–543, https://doi.org/10.1016/J.EGYPRO.2016.09.232, 2016. a
Dassault Systemes: SIMULIA PowerFLOW User's Guide, https://www.3ds.com/products/simulia/powerflow (last access: 25 February 2024), 2021. a
Delft High Performance Computing Centre (DHPC): DelftBlue Supercomputer (Phase 1), https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1 (last access: 25 February 2024), 2022. 
Download
Short summary
This paper compares six different numerical models to predict the performance of an X-shaped vertical-axis wind turbine, offering insights into how it works in 3D when its blades are fixed at specific angles. The results showed the 3D models here reliably predict the performance while still taking this turbine's complex aerodynamics into account compared to 2D models. Further, these blade angles caused more complexity in predicting the turbine's behaviour, which is highlighted in this paper.
Altmetrics
Final-revised paper
Preprint