Articles | Volume 2, issue 1
Wind Energ. Sci., 2, 115–131, 2017
https://doi.org/10.5194/wes-2-115-2017
Wind Energ. Sci., 2, 115–131, 2017
https://doi.org/10.5194/wes-2-115-2017
Research article
10 Mar 2017
Research article | 10 Mar 2017

Optimization of wind plant layouts using an adjoint approach

Ryan N. King et al.

Related authors

Quantifying the effect of blockage for wind farm layout optimization
Ethan Young, Jeffery Allen, John Jasa, Garrett Barter, and Ryan King
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-7,https://doi.org/10.5194/wes-2022-7, 2022
Preprint under review for WES
Short summary
Multifidelity Multiobjective Optimization for Wake Steering Strategies
Julian Quick, Ryan N. King, Garrett Barter, and Peter E. Hamlington
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-152,https://doi.org/10.5194/wes-2021-152, 2022
Revised manuscript under review for WES
Short summary
Control-oriented model for secondary effects of wake steering
Jennifer King, Paul Fleming, Ryan King, Luis A. Martínez-Tossas, Christopher J. Bay, Rafael Mudafort, and Eric Simley
Wind Energ. Sci., 6, 701–714, https://doi.org/10.5194/wes-6-701-2021,https://doi.org/10.5194/wes-6-701-2021, 2021
Short summary
Wake steering optimization under uncertainty
Julian Quick, Jennifer King, Ryan N. King, Peter E. Hamlington, and Katherine Dykes
Wind Energ. Sci., 5, 413–426, https://doi.org/10.5194/wes-5-413-2020,https://doi.org/10.5194/wes-5-413-2020, 2020
Short summary
A systematic approach to offshore wind turbine jacket predesign and optimization: geometry, cost, and surrogate structural code check models
Jan Häfele, Rick R. Damiani, Ryan N. King, Cristian G. Gebhardt, and Raimund Rolfes
Wind Energ. Sci., 3, 553–572, https://doi.org/10.5194/wes-3-553-2018,https://doi.org/10.5194/wes-3-553-2018, 2018
Short summary

Related subject area

Wind and turbulence
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary
Development of an automatic thresholding method for wake meandering studies and its application to the data set from scanning wind lidar
Maria Krutova, Mostafa Bakhoday-Paskyabi, Joachim Reuder, and Finn Gunnar Nielsen
Wind Energ. Sci., 7, 849–873, https://doi.org/10.5194/wes-7-849-2022,https://doi.org/10.5194/wes-7-849-2022, 2022
Short summary
Turbulence statistics from three different nacelle lidars
Wei Fu, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 7, 831–848, https://doi.org/10.5194/wes-7-831-2022,https://doi.org/10.5194/wes-7-831-2022, 2022
Short summary
RANS modeling of a single wind turbine wake in the unstable surface layer
Mads Baungaard, Maarten Paul van der Laan, and Mark Kelly
Wind Energ. Sci., 7, 783–800, https://doi.org/10.5194/wes-7-783-2022,https://doi.org/10.5194/wes-7-783-2022, 2022
Short summary
Wake properties and power output of very large wind farms for different meteorological conditions and turbine spacings: a large-eddy simulation case study for the German Bight
Oliver Maas and Siegfried Raasch
Wind Energ. Sci., 7, 715–739, https://doi.org/10.5194/wes-7-715-2022,https://doi.org/10.5194/wes-7-715-2022, 2022
Short summary

Cited articles

Ainslie, J.: Calculating the flowfield in the wake of wind turbines, J. Wind Eng. Ind. Aerod., 27, 213–224, https://doi.org/10.1016/0167-6105(88)90037-2, 1988.
Amestoy, P. R., Duff, I. S., and L'Excellent, J. Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. Method. Appl. M., 184, 501–520, https://doi.org/10.1016/S0045-7825(99)00242-X, 2000.
Barthelmie, R. J., Hansen, K., Frandsen, S. T., Rathmann, O., Schepers, J. G., Schlez, W., Phillips, J., Rados, K., Zervos, A., Politis, E. S., and Chaviaropoulos, P. K.: Modelling and measuring flow and wind turbine wakes in large wind farms offshore, Wind Energy, 12, 431–444, https://doi.org/10.1002/we.348, 2009.
Boersma, S., Gebraad, P., Vali, M., Doekemeijer, B., and van Wingerden, J.: A control-oriented dynamic wind farm flow model: “WFSim”, J. Phys. Conf. Ser., 753, 032005, https://doi.org/10.1088/1742-6596/753/3/032005, 2016.
Bokharaie, V. S., Bauweraerts, P., and Meyers, J.: Wind-farm layout optimisation using a hybrid Jensen-LES approach, Wind Energ. Sci., 1, 311–325, https://doi.org/10.5194/wes-1-311-2016, 2016.
Download
Short summary
This paper demonstrates optimization of wind turbine locations within a utility-scale wind plant using a nonlinear flow model and gradient-based optimization techniques made possible through the use of adjoints. This represents a groundbreaking improvement in model fidelity and optimization efficiency for wind energy applications. The optimized wind farms demonstrate significant improvements in annual energy production with turbine layouts that take advantage of nonlinear flow curvature effects.