Articles | Volume 3, issue 2
https://doi.org/10.5194/wes-3-929-2018
https://doi.org/10.5194/wes-3-929-2018
Research article
 | 
20 Dec 2018
Research article |  | 20 Dec 2018

Micro-scale model comparison (benchmark) at the moderately complex forested site Ryningsnäs

Stefan Ivanell, Johan Arnqvist, Matias Avila, Dalibor Cavar, Roberto Aurelio Chavez-Arroyo, Hugo Olivares-Espinosa, Carlos Peralta, Jamal Adib, and Björn Witha

Related authors

An actuator sector model for wind power applications: a parametric study
Mohammad Mehdi Mohammadi, Hugo Olivares-Espinosa, Gonzalo Pablo Navarro Diaz, and Stefan Ivanell
Wind Energ. Sci., 9, 1305–1321, https://doi.org/10.5194/wes-9-1305-2024,https://doi.org/10.5194/wes-9-1305-2024, 2024
Short summary
Machine learning methods to improve spatial predictions of coastal wind speed profiles and low-level jets using single-level ERA5 data
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Ville Vakkari, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 9, 821–840, https://doi.org/10.5194/wes-9-821-2024,https://doi.org/10.5194/wes-9-821-2024, 2024
Short summary
Brief communication: On the definition of the low-level jet
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 8, 1651–1658, https://doi.org/10.5194/wes-8-1651-2023,https://doi.org/10.5194/wes-8-1651-2023, 2023
Short summary
The winds are twisting: analysis of strong directional shear across the rotor plane using coastal lidar measurements and ERA5
Christoffer Hallgren, Heiner Körnich, Stefan Ivanell, Ville Vakkari, and Erik Sahlée
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-129,https://doi.org/10.5194/wes-2023-129, 2023
Preprint withdrawn
Short summary
Actuator line model using simplified force calculation methods
Gonzalo Pablo Navarro Diaz, Alejandro Daniel Otero, Henrik Asmuth, Jens Nørkær Sørensen, and Stefan Ivanell
Wind Energ. Sci., 8, 363–382, https://doi.org/10.5194/wes-8-363-2023,https://doi.org/10.5194/wes-8-363-2023, 2023
Short summary

Related subject area

Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022,https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022,https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Large-eddy simulation of airborne wind energy farms
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022,https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022,https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary

Cited articles

Apsley, D. D. and Castro, I. P.: A limited-length-scale kϵ model for the neutral and stably-stratified atmospheric boundary layer, Bound.-Lay. Meteorol., 83, 75–98, https://doi.org/10.1023/A:1000252210512, 1997. a, b
Arnqvist, J., Segalini, A., and Dellwik, E.: Wind Statistics from a Forested Landscape, Bound.-Lay. Meteorol., 156, 53–71, https://doi.org/10.1007/s10546-015-0016-x, 2015. a, b, c, d
Avila, M., Codina, R., and Principe, J.: Finite element dynamical subgrid-scale model for low Mach number flows with radiative heat transfer, Int. J. Numer. Method H., 25, 1361–1384, 2015. a
Avila, M., Gargallo-Peiro, A., and Folch, A.: A CFD framework for offshore and onshore wind farm simulation, J. Phys. Conf. Ser., 854, 012002, https://doi.org/10.1088/1742-6596/854/1/012002, 2017. a
Ayotte, K. W.: Computational Modelling For Wind Energy Assessment, J. Wind Eng. Ind. Aerod., 96, 1571–1590, https://doi.org/10.1016/j.jweia.2008.02.002, 2008. a
Download
Short summary
This article describes a study in which modellers were challenged to compute the wind at a forested site with moderately complex topography. The target was to match the measured wind profile at one exact location for three directions. The input to the models consisted of detailed information on forest densities and ground height. Overall, the article gives an overview of how well different types of models are able to capture the flow physics at a moderately complex forested site.
Altmetrics
Final-revised paper
Preprint