Articles | Volume 5, issue 1
Wind Energ. Sci., 5, 73–87, 2020
https://doi.org/10.5194/wes-5-73-2020
Wind Energ. Sci., 5, 73–87, 2020
https://doi.org/10.5194/wes-5-73-2020

Research article 13 Jan 2020

Research article | 13 Jan 2020

Digitalization of scanning lidar measurement campaign planning

Nikola Vasiljević et al.

Related authors

The Alaiz experiment: untangling multi-scale stratified flows over complex terrain
Pedro Santos, Jakob Mann, Nikola Vasiljević, Elena Cantero, Javier Sanz Rodrigo, Fernando Borbón, Daniel Martínez-Villagrasa, Belén Martí, and Joan Cuxart
Wind Energ. Sci., 5, 1793–1810, https://doi.org/10.5194/wes-5-1793-2020,https://doi.org/10.5194/wes-5-1793-2020, 2020
Short summary
Multi-lidar wind resource mapping in complex terrain
Robert Menke, Nikola Vasiljević, Johannes Wagner, Steven P. Oncley, and Jakob Mann
Wind Energ. Sci., 5, 1059–1073, https://doi.org/10.5194/wes-5-1059-2020,https://doi.org/10.5194/wes-5-1059-2020, 2020
Short summary
Uncertainty model for dual-Doppler retrievals of wind speed and wind direction
Nikola Vasiljević, Michael Courtney, and Anders Tegtmeier Pedersen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-321,https://doi.org/10.5194/amt-2020-321, 2020
Publication in AMT not foreseen
Short summary
Wind sensing with drone-mounted wind lidars: proof of concept
Nikola Vasiljević, Michael Harris, Anders Tegtmeier Pedersen, Gunhild Rolighed Thorsen, Mark Pitter, Jane Harris, Kieran Bajpai, and Michael Courtney
Atmos. Meas. Tech., 13, 521–536, https://doi.org/10.5194/amt-13-521-2020,https://doi.org/10.5194/amt-13-521-2020, 2020
Short summary
Characterization of flow recirculation zones at the Perdigão site using multi-lidar measurements
Robert Menke, Nikola Vasiljević, Jakob Mann, and Julie K. Lundquist
Atmos. Chem. Phys., 19, 2713–2723, https://doi.org/10.5194/acp-19-2713-2019,https://doi.org/10.5194/acp-19-2713-2019, 2019
Short summary

Related subject area

Design methods, reliability and uncertainty modelling
Aeroelastic loads on a 10 MW turbine exposed to extreme events selected from a year-long large-eddy simulation over the North Sea
Gerard Schepers, Pim van Dorp, Remco Verzijlbergh, Peter Baas, and Harmen Jonker
Wind Energ. Sci., 6, 983–996, https://doi.org/10.5194/wes-6-983-2021,https://doi.org/10.5194/wes-6-983-2021, 2021
Short summary
Optimal scheduling of the next preventive maintenance activity for a wind farm
Quanjiang Yu, Michael Patriksson, and Serik Sagitov
Wind Energ. Sci., 6, 949–959, https://doi.org/10.5194/wes-6-949-2021,https://doi.org/10.5194/wes-6-949-2021, 2021
Short summary
A method for preliminary rotor design – Part 1: Radially Independent Actuator Disc model
Kenneth Loenbaek, Christian Bak, Jens I. Madsen, and Michael McWilliam
Wind Energ. Sci., 6, 903–915, https://doi.org/10.5194/wes-6-903-2021,https://doi.org/10.5194/wes-6-903-2021, 2021
Short summary
A method for preliminary rotor design – Part 2: Wind turbine Optimization with Radial Independence
Kenneth Loenbaek, Christian Bak, and Michael McWilliam
Wind Energ. Sci., 6, 917–933, https://doi.org/10.5194/wes-6-917-2021,https://doi.org/10.5194/wes-6-917-2021, 2021
Short summary
Wind farm layout optimization using pseudo-gradients
Erik Quaeghebeur, René Bos, and Michiel B. Zaaijer
Wind Energ. Sci., 6, 815–839, https://doi.org/10.5194/wes-6-815-2021,https://doi.org/10.5194/wes-6-815-2021, 2021
Short summary

Cited articles

Al-Sharif, L.: Intermediate Elevator Kinematics and Preferred Numbers (METE III), Lift Report, 40, 20–31, available at: https://www.researchgate.net/publication/275408222_Intermediate_Elevator_Kinematics_and_Preferred_Numbers_METE_III (last access: 9 January 2020), 2014. a
Bingöl, F., Mann, J., and Foussekis, D.: Conically scanning lidar error in complex terrain, Meteorol. Z., 18, 189–195, 2009. a
Biniaz, A., Liu, P., Maheshwari, A., and Smid, M.: Approximation Algorithms for the Unit Disk Cover Problem in 2D and 3D, Comput. Geom. Theory Appl., 60, 8–18, https://doi.org/10.1016/j.comgeo.2016.04.002, 2017. a
Carta, J. A., Velázquez, S., and Cabrera, P.: A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site, Renewable and Sustainable Energy Reviews, 27, 362–400, https://doi.org/10.1016/j.rser.2013.07.004, 2013. a
Clerc, A., Anderson, M., Stuart, P., and Habenicht, G.: A systematic method for quantifying wind flow modelling uncertainty in wind resource assessment, J. Wind Eng. Ind. Aerod., 111, 84–94, https://doi.org/10.1016/j.jweia.2012.08.006, 2012. a
Download
Short summary
A WindScanner system consisting of two synchronized scanning lidars potentially represents a cost-effective solution for multipoint measurements. However, the lidar limitations and the site limitations are detrimental to the installation of lidars and number and location of measurement positions. To simplify the process of finding suitable measurement positions and lidar installation locations, a campaign planning workflow was devised. The paper describes the workflow and how it was digitalized.