Articles | Volume 6, issue 2
Wind Energ. Sci., 6, 441–460, 2021
https://doi.org/10.5194/wes-6-441-2021
Wind Energ. Sci., 6, 441–460, 2021
https://doi.org/10.5194/wes-6-441-2021
Research article
19 Mar 2021
Research article | 19 Mar 2021

Validation of the dynamic wake meandering model with respect to loads and power production

Inga Reinwardt et al.

Related authors

Dynamic wake meandering model calibration using nacelle-mounted lidar systems
Inga Reinwardt, Levin Schilling, Peter Dalhoff, Dirk Steudel, and Michael Breuer
Wind Energ. Sci., 5, 775–792, https://doi.org/10.5194/wes-5-775-2020,https://doi.org/10.5194/wes-5-775-2020, 2020
Short summary

Related subject area

Wind and turbulence
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022,https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary
Development of an automatic thresholding method for wake meandering studies and its application to the data set from scanning wind lidar
Maria Krutova, Mostafa Bakhoday-Paskyabi, Joachim Reuder, and Finn Gunnar Nielsen
Wind Energ. Sci., 7, 849–873, https://doi.org/10.5194/wes-7-849-2022,https://doi.org/10.5194/wes-7-849-2022, 2022
Short summary
Turbulence statistics from three different nacelle lidars
Wei Fu, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 7, 831–848, https://doi.org/10.5194/wes-7-831-2022,https://doi.org/10.5194/wes-7-831-2022, 2022
Short summary
RANS modeling of a single wind turbine wake in the unstable surface layer
Mads Baungaard, Maarten Paul van der Laan, and Mark Kelly
Wind Energ. Sci., 7, 783–800, https://doi.org/10.5194/wes-7-783-2022,https://doi.org/10.5194/wes-7-783-2022, 2022
Short summary

Cited articles

Ainslie, J. F.: Calculating the flowfield in the wake of wind turbines, J. Wind Eng. Ind. Aerodyn., 27, 213–224, 1988. a, b, c
Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine wakes, Renew. Energ., 70, 116–123, 2014. a, b, c
Burton, T.: Wind energy handbook, Wiley, Berlin, Heidelberg, Germany, 2011. a
Conti, D., Dimitrov, N., and Peña, A.: Aeroelastic load validation in wake conditions using nacelle-mounted lidar measurements, Wind Energ. Sci., 5, 1129–1154, https://doi.org/10.5194/wes-5-1129-2020, 2020. a, b, c
Dimitrov, N., Borraccino, A., Peña, A., Natarajan, A., and Mann, J.: Wind turbine load validation using lidar‐based wind retrievals, Wind Energy, 22, 1512–1533, https://doi.org/10.1002/we.2385, 2019. a, b
Download
Short summary
This analysis validates the DWM model based on loads and power production measured at an onshore wind farm. Special focus is given to the performance of a version of the DWM model that was previously recalibrated with a lidar system at the site. The results of the recalibrated wake model agree very well with the measurements. Furthermore, lidar measurements of the wind speed deficit and the wake meandering are incorporated in the DWM model definition in order to decrease the uncertainties.