Articles | Volume 8, issue 3
https://doi.org/10.5194/wes-8-303-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-8-303-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the laminar–turbulent transition mechanism on megawatt wind turbine blades operating in atmospheric flow
Brandon Arthur Lobo
CORRESPONDING AUTHOR
Mechanical Engineering Department, Kiel University of Applied Sciences, 24149 Kiel, Germany
Özge Sinem Özçakmak
Department of Wind Energy, Denmark Technical University, 4000 Roskilde, Denmark
Helge Aagaard Madsen
Department of Wind Energy, Denmark Technical University, 4000 Roskilde, Denmark
Alois Peter Schaffarczyk
Mechanical Engineering Department, Kiel University of Applied Sciences, 24149 Kiel, Germany
Michael Breuer
Department of Mechanical and Civil Engineering, Helmut-Schmidt-Universität Hamburg, 22043 Hamburg, Germany
Niels N. Sørensen
Department of Wind Energy, Denmark Technical University, 4000 Roskilde, Denmark
Related authors
Koen Boorsma, Gerard Schepers, Helge Aagard Madsen, Georg Pirrung, Niels Sørensen, Galih Bangga, Manfred Imiela, Christian Grinderslev, Alexander Meyer Forsting, Wen Zhong Shen, Alessandro Croce, Stefano Cacciola, Alois Peter Schaffarczyk, Brandon Lobo, Frederic Blondel, Philippe Gilbert, Ronan Boisard, Leo Höning, Luca Greco, Claudio Testa, Emmanuel Branlard, Jason Jonkman, and Ganesh Vijayakumar
Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023, https://doi.org/10.5194/wes-8-211-2023, 2023
Short summary
Short summary
Within the framework of the fourth phase of the International Energy Agency's (IEA) Wind Task 29, a large comparison exercise between measurements and aeroelastic simulations has been carried out. Results were obtained from more than 19 simulation tools of various fidelity, originating from 12 institutes and compared to state-of-the-art field measurements. The result is a unique insight into the current status and accuracy of rotor aerodynamic modeling.
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022, https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Short summary
This research involves studying the flow around the section of a wind turbine blade, albeit at a lower Reynolds number or flow speed, using wall-resolved large-eddy simulations, a form of computer simulation that resolves the important scales of the flow. Among the many interesting results, it is shown that the energy entering the boundary layer around the airfoil or section of the blade is proportional to the square of the incoming flow turbulence intensity.
Helge Aagaard Madsen, Alejandro Gomez Gonzalez, Thanasis Barlas, Anders Smærup Olsen, Sigurd Brabæk Ildvedsen, and Andreas Fischer
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-75, https://doi.org/10.5194/wes-2025-75, 2025
Preprint under review for WES
Short summary
Short summary
In this article we present the measurements of local aerodynamic sectional characteristics on a full-scale rotor blade with a novel add-on instrumentation comprising a wake rake, a pressure belt, and a five hole Pitot tube. In general, the demonstration of this instrumentation opens a range of promising new options for optimizing airfoil sectional performance in its real operating environment, e.g. the size and position of VG's.
Jens Visbech, Tuhfe Göçmen, Özge Sinem Özçakmak, Alexander Meyer Forsting, Ásta Hannesdóttir, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 1811–1826, https://doi.org/10.5194/wes-9-1811-2024, https://doi.org/10.5194/wes-9-1811-2024, 2024
Short summary
Short summary
Leading-edge erosion (LEE) can impact wind turbine aerodynamics and wind farm efficiency. This study couples LEE prediction, aerodynamic loss modeling, and wind farm flow modeling to show that LEE's effects on wake dynamics can affect overall energy production. Without preventive initiatives, the effects of LEE increase over time, resulting in significant annual energy production (AEP) loss.
Andrea Gamberini, Thanasis Barlas, Alejandro Gomez Gonzalez, and Helge Aagaard Madsen
Wind Energ. Sci., 9, 1229–1249, https://doi.org/10.5194/wes-9-1229-2024, https://doi.org/10.5194/wes-9-1229-2024, 2024
Short summary
Short summary
Movable surfaces on wind turbine (WT) blades, called active flaps, can reduce the cost of wind energy. However, they still need extensive testing. This study shows that the computer model used to design a WT with flaps aligns well with measurements obtained from a 3month test on a commercial WT featuring a prototype flap. Particularly during flap actuation, there were minimal differences between simulated and measured data. These findings assure the reliability of WT designs incorporating flaps.
Helge Aagaard Madsen
Wind Energ. Sci., 8, 1853–1872, https://doi.org/10.5194/wes-8-1853-2023, https://doi.org/10.5194/wes-8-1853-2023, 2023
Short summary
Short summary
We present a linear analytical solution for a two-dimensional (2-D) actuator disc (AD) for a plane disc, a yawed disc and a coned disc. Comparisons of the 2-D model with three-dimensional computational fluid dynamics (CFD) AD simulations for a circular yawed disc and with an axis-symmetric CFD simulation of a coned disc show good correlation for the normal velocity component of the disc. This indicates that the 2-D AD model could form the basis for a consistent, simple new rotor induction model.
Christian Grinderslev, Felix Houtin-Mongrolle, Niels Nørmark Sørensen, Georg Raimund Pirrung, Pim Jacobs, Aqeel Ahmed, and Bastien Duboc
Wind Energ. Sci., 8, 1625–1638, https://doi.org/10.5194/wes-8-1625-2023, https://doi.org/10.5194/wes-8-1625-2023, 2023
Short summary
Short summary
In standstill conditions wind turbines are at risk of vortex-induced vibrations (VIVs). VIVs can become large and lead to significant fatigue of the wind turbine structure over time. Thus it is important to have tools that can accurately compute this complex phenomenon. This paper studies the sensitivities to the chosen models of computational fluid dynamics (CFD) simulations when modelling VIVs and finds that much care is needed when setting up simulations, especially for specific flow angles.
Paul Veers, Carlo L. Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Thanasis Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023, https://doi.org/10.5194/wes-8-1071-2023, 2023
Short summary
Short summary
Critical unknowns in the design, manufacturing, and operation of future wind turbine and wind plant systems are articulated, and key research activities are recommended.
Maarten Paul van der Laan, Oscar García-Santiago, Mark Kelly, Alexander Meyer Forsting, Camille Dubreuil-Boisclair, Knut Sponheim Seim, Marc Imberger, Alfredo Peña, Niels Nørmark Sørensen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 8, 819–848, https://doi.org/10.5194/wes-8-819-2023, https://doi.org/10.5194/wes-8-819-2023, 2023
Short summary
Short summary
Offshore wind farms are more commonly installed in wind farm clusters, where wind farm interaction can lead to energy losses. In this work, an efficient numerical method is presented that can be used to estimate these energy losses. The novel method is verified with higher-fidelity numerical models and validated with measurements of an existing wind farm cluster.
Koen Boorsma, Gerard Schepers, Helge Aagard Madsen, Georg Pirrung, Niels Sørensen, Galih Bangga, Manfred Imiela, Christian Grinderslev, Alexander Meyer Forsting, Wen Zhong Shen, Alessandro Croce, Stefano Cacciola, Alois Peter Schaffarczyk, Brandon Lobo, Frederic Blondel, Philippe Gilbert, Ronan Boisard, Leo Höning, Luca Greco, Claudio Testa, Emmanuel Branlard, Jason Jonkman, and Ganesh Vijayakumar
Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023, https://doi.org/10.5194/wes-8-211-2023, 2023
Short summary
Short summary
Within the framework of the fourth phase of the International Energy Agency's (IEA) Wind Task 29, a large comparison exercise between measurements and aeroelastic simulations has been carried out. Results were obtained from more than 19 simulation tools of various fidelity, originating from 12 institutes and compared to state-of-the-art field measurements. The result is a unique insight into the current status and accuracy of rotor aerodynamic modeling.
Christian Grinderslev, Niels Nørmark Sørensen, Georg Raimund Pirrung, and Sergio González Horcas
Wind Energ. Sci., 7, 2201–2213, https://doi.org/10.5194/wes-7-2201-2022, https://doi.org/10.5194/wes-7-2201-2022, 2022
Short summary
Short summary
As wind turbines increase in size, the risk of flow-induced instabilities increases. This study investigates the phenomenon of vortex-induced vibrations (VIVs) on a large 10 MW wind turbine blade using two high-fidelity methods. It is found that VIVs can occur with multiple equilibrium states for the same flow case, showing an dependence on the initial conditions. This means that a blade which is stable in a flow can become unstable if, e.g., a turbine operation provokes an initial vibration.
Thanasis Barlas, Georg Raimund Pirrung, Néstor Ramos-García, Sergio González Horcas, Ang Li, and Helge Aagaard Madsen
Wind Energ. Sci., 7, 1957–1973, https://doi.org/10.5194/wes-7-1957-2022, https://doi.org/10.5194/wes-7-1957-2022, 2022
Short summary
Short summary
An aeroelastically optimized curved wind turbine blade tip is designed, manufactured, and tested on a novel outdoor rotating rig facility at the Risø campus of the Technical University of Denmark. Detailed aerodynamic measurements for various atmospheric conditions and results are compared to a series of in-house aeroelastic tools with a range of fidelities in aerodynamic modeling. The comparison highlights details in the ability of the codes to predict the performance of such a curved tip.
Mads H. Aa. Madsen, Frederik Zahle, Sergio González Horcas, Thanasis K. Barlas, and Niels N. Sørensen
Wind Energ. Sci., 7, 1471–1501, https://doi.org/10.5194/wes-7-1471-2022, https://doi.org/10.5194/wes-7-1471-2022, 2022
Short summary
Short summary
This work presents a shape optimization framework based on computational fluid dynamics. The design framework is used to optimize wind turbine blade tips for maximum power increase while avoiding that extra loading is incurred. The final results are shown to align well with related literature. The resulting tip shape could be mounted on already installed wind turbines as a sleeve-like solution or be conceived as part of a modular blade with tips designed for site-specific conditions.
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022, https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Short summary
This research involves studying the flow around the section of a wind turbine blade, albeit at a lower Reynolds number or flow speed, using wall-resolved large-eddy simulations, a form of computer simulation that resolves the important scales of the flow. Among the many interesting results, it is shown that the energy entering the boundary layer around the airfoil or section of the blade is proportional to the square of the incoming flow turbulence intensity.
Ang Li, Georg Raimund Pirrung, Mac Gaunaa, Helge Aagaard Madsen, and Sergio González Horcas
Wind Energ. Sci., 7, 129–160, https://doi.org/10.5194/wes-7-129-2022, https://doi.org/10.5194/wes-7-129-2022, 2022
Short summary
Short summary
An engineering aerodynamic model for the swept horizontal-axis wind turbine blades is proposed. It uses a combination of analytical results and engineering approximations. The performance of the model is comparable with heavier high-fidelity models but has similarly low computational cost as currently used low-fidelity models. The model could be used for an efficient and accurate load calculation of swept wind turbine blades and could eventually be integrated in a design optimization framework.
Thales Fava, Mikaela Lokatt, Niels Sørensen, Frederik Zahle, Ardeshir Hanifi, and Dan Henningson
Wind Energ. Sci., 6, 715–736, https://doi.org/10.5194/wes-6-715-2021, https://doi.org/10.5194/wes-6-715-2021, 2021
Short summary
Short summary
This work develops a simplified framework to predict transition to turbulence on wind-turbine blades. The model is based on the boundary-layer and parabolized stability equations, including rotation and three-dimensionality effects. We show that these effects may promote transition through highly oblique Tollmien–Schlichting (TS) or crossflow modes at low radii, and they should be considered for a correct transition prediction. At high radii, transition tends to occur through 2D TS modes.
Christian Grinderslev, Niels Nørmark Sørensen, Sergio González Horcas, Niels Troldborg, and Frederik Zahle
Wind Energ. Sci., 6, 627–643, https://doi.org/10.5194/wes-6-627-2021, https://doi.org/10.5194/wes-6-627-2021, 2021
Short summary
Short summary
This study investigates aero-elasticity of wind turbines present in the turbulent and chaotic wind flow of the lower atmosphere, using fluid–structure interaction simulations. This method combines structural response computations with high-fidelity modeling of the turbulent wind flow, using a novel turbulence model which combines the capabilities of large-eddy simulations for atmospheric flows with improved delayed detached eddy simulations for the separated flow near the rotor.
Inga Reinwardt, Levin Schilling, Dirk Steudel, Nikolay Dimitrov, Peter Dalhoff, and Michael Breuer
Wind Energ. Sci., 6, 441–460, https://doi.org/10.5194/wes-6-441-2021, https://doi.org/10.5194/wes-6-441-2021, 2021
Short summary
Short summary
This analysis validates the DWM model based on loads and power production measured at an onshore wind farm. Special focus is given to the performance of a version of the DWM model that was previously recalibrated with a lidar system at the site. The results of the recalibrated wake model agree very well with the measurements. Furthermore, lidar measurements of the wind speed deficit and the wake meandering are incorporated in the DWM model definition in order to decrease the uncertainties.
Alejandro Gomez Gonzalez, Peder B. Enevoldsen, Athanasios Barlas, and Helge A. Madsen
Wind Energ. Sci., 6, 33–43, https://doi.org/10.5194/wes-6-33-2021, https://doi.org/10.5194/wes-6-33-2021, 2021
Short summary
Short summary
This work describes a series of tests of active flaps on a 4 MW wind turbine. The measurements were performed between October 2017 and June 2019 using two different active flap configurations on a blade of the turbine, showing a potential to manipulate the loading of the turbine between 5 % and 10 %. This project is performed with the aim of demonstrating a technology with the potential of reducing the levelized cost of energy for wind power.
Özge Sinem Özçakmak, Helge Aagaard Madsen, Niels Nørmark Sørensen, and Jens Nørkær Sørensen
Wind Energ. Sci., 5, 1487–1505, https://doi.org/10.5194/wes-5-1487-2020, https://doi.org/10.5194/wes-5-1487-2020, 2020
Short summary
Short summary
Accurate prediction of the laminar-turbulent transition process is critical for design and prediction tools to be used in the industrial design process, particularly for the high Reynolds numbers experienced by modern wind turbines. Laminar-turbulent transition behavior of a wind turbine blade section is investigated in this study by means of field experiments and 3-D computational fluid dynamics (CFD) rotor simulations.
Inga Reinwardt, Levin Schilling, Peter Dalhoff, Dirk Steudel, and Michael Breuer
Wind Energ. Sci., 5, 775–792, https://doi.org/10.5194/wes-5-775-2020, https://doi.org/10.5194/wes-5-775-2020, 2020
Short summary
Short summary
This study presents a measurement campaign, which consists of two nacelle-mounted lidar systems in a densely packed onshore wind farm. The aim of the campaign is to validate and improve wake models for load and power estimations in wind farms. Based on the findings from the measurements, the formulation of the wake degradation in the dynamic wake meandering model has been adjusted, so that the recalibrated model coincides very well with the measurements and thereby reduces the uncertainties.
Christian Grinderslev, Federico Belloni, Sergio González Horcas, and Niels Nørmark Sørensen
Wind Energ. Sci., 5, 543–560, https://doi.org/10.5194/wes-5-543-2020, https://doi.org/10.5194/wes-5-543-2020, 2020
Short summary
Short summary
This study focuses on coupled computational fluid and structural dynamics simulations of a dynamic structural test of a wind turbine blade, as performed in laboratories. It is found that drag coefficients used for simulations, when planning fatigue tests, underestimate air resistance to the dynamic motion that the blade undergoes during tests. If this is not corrected for, this can result in the forces applied to the blade actually being lower in reality during tests than what was planned.
Helge Aagaard Madsen, Torben Juul Larsen, Georg Raimund Pirrung, Ang Li, and Frederik Zahle
Wind Energ. Sci., 5, 1–27, https://doi.org/10.5194/wes-5-1-2020, https://doi.org/10.5194/wes-5-1-2020, 2020
Short summary
Short summary
We show in the paper that the upscaling of turbines has led to new requirements in simulation of the unsteady aerodynamic forces by the engineering blade element momentum (BEM) model, originally developed for simulation of the aerodynamics of propellers and helicopters. We present a new implementation of the BEM model on a polar grid which can be characterized as an engineering actuator disc model. The aeroelastic load impact of the new BEM implementation is analyzed and quantified.
Mads Mølgaard Pedersen, Torben Juul Larsen, Helge Aagaard Madsen, and Gunner Christian Larsen
Wind Energ. Sci., 4, 303–323, https://doi.org/10.5194/wes-4-303-2019, https://doi.org/10.5194/wes-4-303-2019, 2019
Short summary
Short summary
In this paper, detailed inflow information extracted from measurements is used to improve the accuracy of simulated wind turbine fatigue loads. Inflow information from nearby met masts is utilised as well as information from a blade-mounted flow sensor in combination with a method to compensate for the disturbance to the flow caused by the presence of the wind turbine.
Mads H. Aa. Madsen, Frederik Zahle, Niels N. Sørensen, and Joaquim R. R. A. Martins
Wind Energ. Sci., 4, 163–192, https://doi.org/10.5194/wes-4-163-2019, https://doi.org/10.5194/wes-4-163-2019, 2019
Short summary
Short summary
The wind energy industry relies heavily on CFD to analyze new designs. This paper investigates a way to utilize CFD further upstream the design process where lower-fidelity methods are used. We present the first comprehensive 3-D CFD adjoint-based shape optimization of a 10 MW modern offshore wind turbine. The present work shows that, with the right tools, we can model the entire geometry, including the root, and optimize modern wind turbine rotors at the cost of a few hundred CFD evaluations.
Georg Raimund Pirrung and Helge Aagaard Madsen
Wind Energ. Sci., 3, 545–551, https://doi.org/10.5194/wes-3-545-2018, https://doi.org/10.5194/wes-3-545-2018, 2018
Short summary
Short summary
A wind turbine sees an overshoot in loading after a step change in pitch angle because the wake takes some time to reach a new equilibrium. The time constants of this dynamic inflow effect are expected to decrease significantly towards the blade tip. This radial dependency has not been found to the expected extent in previous analyses of force measurements from the NASA Ames Phase VI experiment. In the present article the findings from the experiment are explained based on a simple vortex model.
Michael K. McWilliam, Thanasis K. Barlas, Helge A. Madsen, and Frederik Zahle
Wind Energ. Sci., 3, 231–241, https://doi.org/10.5194/wes-3-231-2018, https://doi.org/10.5194/wes-3-231-2018, 2018
Short summary
Short summary
Maximizing wind energy production is challenging because the winds are always changing. Design optimization was used to explore how flaps can give rotor design engineers greater ability to adapt the rotor for different conditions. For rotors designed for peak efficiency (i.e. older designs) the flap adds 0.5 % improvement in energy production. However, for modern designs that optimize both the performance and the structure, the flap can provide a 1 % improvement.
Mads Mølgaard Pedersen, Torben Juul Larsen, Helge Aagaard Madsen, and Søren Juhl Andersen
Wind Energ. Sci., 3, 121–138, https://doi.org/10.5194/wes-3-121-2018, https://doi.org/10.5194/wes-3-121-2018, 2018
Short summary
Short summary
The wind speed measured by a flow sensor mounted on the blade of a wind turbine is disturbed by the turbine. This paper presents a method to obtain the free turbulence inflow by compensating for this disturbance.
The method is tested using numerical simulations and can be used to extract inflow information for accurate aeroelastic load simulations.
Georg R. Pirrung, Helge A. Madsen, and Scott Schreck
Wind Energ. Sci., 2, 521–532, https://doi.org/10.5194/wes-2-521-2017, https://doi.org/10.5194/wes-2-521-2017, 2017
Short summary
Short summary
Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A near-wake model for wind turbines in operation is extended to cover these conditions. The model is validated in aerodynamic simulations of the NREL/NASA Ames Phase VI rotor. Good agreement with the experiments has been obtained in attached flow and beginning separation. Aeroelastic simulations of the DTU 10 MW turbine in standstill indicate a minor impact of the model.
Mads M. Pedersen, Torben J. Larsen, Helge Aa. Madsen, and Gunner Chr. Larsen
Wind Energ. Sci., 2, 547–567, https://doi.org/10.5194/wes-2-547-2017, https://doi.org/10.5194/wes-2-547-2017, 2017
Short summary
Short summary
This paper presents an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor. A high correlation is found between the wind speed measured at the blades and the power/loads, and simulations indicate that it is possible to reduce the time required for power and load assessment considerably. This result, however, cannot be confirmed from the full-scale measurement study due to practical circumstances.
Maarten Paul van der Laan and Niels Nørmark Sørensen
Wind Energ. Sci., 2, 285–294, https://doi.org/10.5194/wes-2-285-2017, https://doi.org/10.5194/wes-2-285-2017, 2017
Short summary
Short summary
In recent years, wind farms have grown in size and are more frequently placed in wind farm clusters. This means that large-scale effects such as the interaction of the Coriolis force and wind farm wakes are becoming more important for designing energy efficient wind farms. The literature disagrees on the turning direction of a wind farm wake due to the Coriolis force. In this article, we explain why the Coriolis force turns a wind farm wake clockwise in the Northern Hemisphere.
Georg Pirrung, Vasilis Riziotis, Helge Madsen, Morten Hansen, and Taeseong Kim
Wind Energ. Sci., 2, 15–33, https://doi.org/10.5194/wes-2-15-2017, https://doi.org/10.5194/wes-2-15-2017, 2017
Short summary
Short summary
The certification process of a wind turbine requires simulations of a coupled structural and aerodynamic wind turbine model in many different external conditions. Due to the large number of load cases, the complexity of the aerodynamics models has to be limited. In this paper, a simplified vortex method based aerodynamics model is described. It is shown that this model, which is fast enough for use in a certification context, can produce results similar to those of a more complex vortex model.
Dalibor Cavar, Pierre-Elouan Réthoré, Andreas Bechmann, Niels N. Sørensen, Benjamin Martinez, Frederik Zahle, Jacob Berg, and Mark C. Kelly
Wind Energ. Sci., 1, 55–70, https://doi.org/10.5194/wes-1-55-2016, https://doi.org/10.5194/wes-1-55-2016, 2016
Short summary
Short summary
Feasibility of a freely available CFD tool, OpenFOAM, in calculating flows of general relevance to the wind industry is investigated by comparing several aspects of its performance to a well-established in-house EllipSys3D solver. The comparison is focused on CFD solver demands regarding grid generation process and computational time.
The quality and accuracy of the achieved results are investigated by conducting the computations using identical/similar solver parameters and numerical setups..
Related subject area
Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
An analytical formulation for turbulence kinetic energy added by wind turbines based on large-eddy simulation
Tall wind profile validation of ERA5, NORA3, and NEWA datasets using lidar observations
Flow acceleration statistics: a new paradigm for wind-driven loads, towards probabilistic turbine design
Observations of wind farm wake recovery at an operating wind farm
Periods of constant wind speed: how long do they last in the turbulent atmospheric boundary layer?
Characterization of local wind profiles: a random forest approach for enhanced wind profile extrapolation
Simulations suggest offshore wind farms modify low-level jets
On the lidar-turbulence paradox and possible countermeasures
The actuator farm model for large eddy simulation (LES) of wind-farm-induced atmospheric gravity waves and farm–farm interaction
Understanding the impact of data gaps on long-term offshore wind resource estimates
Evaluating mesoscale model predictions of diurnal speedup events in the Altamont Pass Wind Resource Area of California
Operational wind plants increase planetary boundary layer height: An observational study
Converging profile relationships for offshore wind speed and turbulence intensity
Gulf of Mexico Hurricane Risk Assessment for Offshore Wind Energy Sites
A simple steady-state inflow model of the neutral and stable atmospheric boundary layer applied to wind turbine wake simulations
Influences of lidar scanning parameters on wind turbine wake retrievals in complex terrain
Performance of wind assessment datasets in United States coastal areas
Experimental evaluation of wind turbine wake turbulence impacts on a general aviation aircraft
Underestimation of strong wind speeds offshore in ERA5: evidence, discussion and correction
Brief communication: A simple axial induction modification to the Weather Research and Forecasting Fitch wind farm parameterization
Impact of swell waves on atmospheric surface turbulence: wave–turbulence decomposition methods
Machine-learning-based estimate of the wind speed over complex terrain using the long short-term memory (LSTM) recurrent neural network
Method to predict the minimum measurement and experiment durations needed to achieve converged and significant results in a wind energy field experiment
Meteorological Impacts of Offshore Wind Turbines as Simulated in the Weather Research and Forecasting Model
Swell Impacts on an Offshore Wind Farm in Stable Boundary Layer: Wake Flow and Energy Budget Analysis
Evaluation of wind farm parameterizations in the WRF model under different atmospheric stability conditions with high-resolution wake simulations
Renewable Energy Complementarity (RECom) maps – a comprehensive visualisation tool to support spatial diversification
Control-oriented modelling of wind direction variability
Machine learning methods to improve spatial predictions of coastal wind speed profiles and low-level jets using single-level ERA5 data
Offshore low-level jet observations and model representation using lidar buoy data off the California coast
Measurement-driven large-eddy simulations of a diurnal cycle during a wake-steering field campaign
The fractal turbulent–non-turbulent interface in the atmosphere
TOSCA – an open-source, finite-volume, large-eddy simulation (LES) environment for wind farm flows
Quantitative comparison of power production and power quality onshore and offshore: a case study from the eastern United States
The wind farm pressure field
Realistic turbulent inflow conditions for estimating the performance of a floating wind turbine
Brief communication: On the definition of the low-level jet
A decision-tree-based measure–correlate–predict approach for peak wind gust estimation from a global reanalysis dataset
Revealing inflow and wake conditions of a 6 MW floating turbine
Stochastic gradient descent for wind farm optimization
Modelling the impact of trapped lee waves on offshore wind farm power output
Applying a random time mapping to Mann-modeled turbulence for the generation of intermittent wind fields
From shear to veer: theory, statistics, and practical application
Quantification and correction of motion influence for nacelle-based lidar systems on floating wind turbines
Gaussian mixture models for the optimal sparse sampling of offshore wind resource
Dependence of turbulence estimations on nacelle lidar scanning strategies
Vertical extrapolation of Advanced Scatterometer (ASCAT) ocean surface winds using machine-learning techniques
An investigation of spatial wind direction variability and its consideration in engineering models
From gigawatt to multi-gigawatt wind farms: wake effects, energy budgets and inertial gravity waves investigated by large-eddy simulations
Investigations of correlation and coherence in turbulence from a large-eddy simulation
Ali Khanjari, Asim Feroz, and Cristina L. Archer
Wind Energ. Sci., 10, 887–905, https://doi.org/10.5194/wes-10-887-2025, https://doi.org/10.5194/wes-10-887-2025, 2025
Short summary
Short summary
Wind turbines add turbulence to the atmosphere behind them, especially 4–6 diameters downstream and near the rotor top. We propose an equation that predicts the distribution of added turbulence as a function of a turbine parameter (thrust coefficient) and an atmospheric parameter (undisturbed turbulence intensity before the turbine). We find that our equation performs well, although not perfectly. Ultimately this equation can be used to better understand how wind turbines affect the atmosphere.
Etienne Cheynet, Jan Markus Diezel, Hilde Haakenstad, Øyvind Breivik, Alfredo Peña, and Joachim Reuder
Wind Energ. Sci., 10, 733–754, https://doi.org/10.5194/wes-10-733-2025, https://doi.org/10.5194/wes-10-733-2025, 2025
Short summary
Short summary
This study analyses wind speed data at heights up to 500 m to support the design of future large offshore wind turbines and airborne wind energy systems. We compared three wind models (ERA5, NORA3, and NEWA) with lidar measurements at five sites using four performance metrics. ERA5 and NORA3 performed equally well offshore, with NORA3 typically outperforming the other two models onshore. More generally, the optimal choice of model depends on site, altitude, and evaluation criteria.
Mark Kelly
Wind Energ. Sci., 10, 535–558, https://doi.org/10.5194/wes-10-535-2025, https://doi.org/10.5194/wes-10-535-2025, 2025
Short summary
Short summary
Industrial standards for wind turbine design are based on 10 min statistics of wind speed at turbine hub height, treating fluctuations as turbulence. But recent work shows that the effect of strong transients is described by flow acceleration. We devise a method to measure the acceleration that turbines encounter; the extremes offshore defy 10 min averages due to various phenomena beyond turbulence. These findings are translated into a recipe supporting statistical design.
Raghavendra Krishnamurthy, Rob K. Newsom, Colleen M. Kaul, Stefano Letizia, Mikhail Pekour, Nicholas Hamilton, Duli Chand, Donna Flynn, Nicola Bodini, and Patrick Moriarty
Wind Energ. Sci., 10, 361–380, https://doi.org/10.5194/wes-10-361-2025, https://doi.org/10.5194/wes-10-361-2025, 2025
Short summary
Short summary
This study examines how atmospheric phenomena affect the recovery of wind farm wake – the disturbed air behind turbines. In regions like Oklahoma, where wind farms are often clustered, understanding wake recovery is crucial. We found that wind farms can alter phenomena like low-level jets, which are common in Oklahoma, by deflecting them above the wind farm. As a result, the impact of wakes can be observed up to 1–2 km above ground level.
Daniela Moreno, Jan Friedrich, Matthias Wächter, Jörg Schwarte, and Joachim Peinke
Wind Energ. Sci., 10, 347–360, https://doi.org/10.5194/wes-10-347-2025, https://doi.org/10.5194/wes-10-347-2025, 2025
Short summary
Short summary
Unexpected load events measured on operating wind turbines are not accurately predicted by numerical simulations. We introduce the periods of constant wind speed as a possible cause of such events. We measure and characterize their statistics from atmospheric data. Further comparisons to standard modelled data and experimental turbulence data suggest that such events are not intrinsic to small-scale turbulence and are not accurately described by current standard wind models.
Farkhondeh (Hanie) Rouholahnejad and Julia Gottschall
Wind Energ. Sci., 10, 143–159, https://doi.org/10.5194/wes-10-143-2025, https://doi.org/10.5194/wes-10-143-2025, 2025
Short summary
Short summary
In wind energy, precise wind speed prediction at hub height is vital. Our study in the Dutch North Sea reveals that the on-site-trained random forest model outperforms the global reanalysis data, ERA5, in accuracy and precision. Trained within a 200 km range, the model effectively extends the wind speed vertically but experiences bias. It also outperforms ERA5 corrected with measurements in capturing wind speed variations and fine wind patterns, highlighting its potential for site assessment.
Daphne Quint, Julie K. Lundquist, and David Rosencrans
Wind Energ. Sci., 10, 117–142, https://doi.org/10.5194/wes-10-117-2025, https://doi.org/10.5194/wes-10-117-2025, 2025
Short summary
Short summary
Offshore wind farms will be built along the East Coast of the United States. Low-level jets (LLJs) – layers of fast winds at low altitudes – also occur here. LLJs provide wind resources and also influence moisture and pollution transport, so it is important to understand how they might change. We develop and validate an automated tool to detect LLJs and compare 1 year of simulations with and without wind farms. Here, we describe LLJ characteristics and how they change with wind farms.
Alfredo Peña, Ginka G. Yankova, and Vasiliki Mallini
Wind Energ. Sci., 10, 83–102, https://doi.org/10.5194/wes-10-83-2025, https://doi.org/10.5194/wes-10-83-2025, 2025
Short summary
Short summary
Lidars are vastly used in wind energy, but most users struggle when interpreting lidar turbulence measures. Here, we explain the difficulty in converting them into standard measurements. We show two ways of converting lidar to in situ turbulence measurements, both using neural networks: one of them is based on physics, while the other is purely data-driven. They show promising results when compared to high-quality turbulence measurements from a tall mast.
Sebastiano Stipa, Arjun Ajay, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 2301–2332, https://doi.org/10.5194/wes-9-2301-2024, https://doi.org/10.5194/wes-9-2301-2024, 2024
Short summary
Short summary
This study presents the actuator farm model, a new method for modeling wind turbines within large wind farms. The model greatly reduces computational cost when compared to traditional actuator wind turbine models and is beneficial for studying flow around large wind farms as well as the interaction between multiple wind farms. Results obtained from numerical simulations show excellent agreement with past wind turbine models, demonstrating its utility for future large-scale wind farm simulations.
Martin Georg Jonietz Alvarez, Warren Watson, and Julia Gottschall
Wind Energ. Sci., 9, 2217–2233, https://doi.org/10.5194/wes-9-2217-2024, https://doi.org/10.5194/wes-9-2217-2024, 2024
Short summary
Short summary
Offshore wind measurements are often affected by gaps. We investigated how these gaps affect wind resource assessments and whether filling them reduces their effect. We find that the effect of gaps on the estimated long-term wind resource is lower than expected and that data gap filling does not significantly change the outcome. These results indicate a need to reduce current wind data availability requirements for offshore measurement campaigns.
Robert S. Arthur, Alex Rybchuk, Timothy W. Juliano, Gabriel Rios, Sonia Wharton, Julie K. Lundquist, and Jerome D. Fast
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-137, https://doi.org/10.5194/wes-2024-137, 2024
Revised manuscript accepted for WES
Short summary
Short summary
This paper evaluates a new model configuration for wind energy forecasting in complex terrain. We compare model results to observations in the Altamont Pass (California, USA), where wind channeling through a mountain pass leads to increased energy production. We show evidence of improved wind speed and turbulence predictions compared to a more established modeling approach. Our work helps to ensure the robustness of the new model configuration for future wind energy applications.
Aliza Abraham, Matteo Puccioni, Arianna Jordan, Emina Maric, Nicola Bodini, Nicholas Hamilton, Stefano Letizia, Petra M. Klein, Elizabeth Smith, Sonia Wharton, Jonathan Gero, Jamey D. Jacob, Raghavendra Krishnamurthy, Rob K. Newsom, Mikhail Pekour, and Patrick Moriarty
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-148, https://doi.org/10.5194/wes-2024-148, 2024
Revised manuscript accepted for WES
Short summary
Short summary
This study is the first to use real-world atmospheric measurements to show that large wind plants can increase the height of the planetary boundary layer, the part of the atmosphere near the surface where life takes place. The planetary boundary layer height governs processes like pollutant transport and cloud formation, and is a key parameter for modeling the atmosphere. The results of this study provide important insights into interactions between wind plants and their local environment.
Gus Jeans
Wind Energ. Sci., 9, 2001–2015, https://doi.org/10.5194/wes-9-2001-2024, https://doi.org/10.5194/wes-9-2001-2024, 2024
Short summary
Short summary
An extensive set of met mast data offshore northwestern Europe are used to reduce uncertainty in offshore wind speed and turbulence intensity. The performance of widely used industry standard relationships is quantified, while some new empirical relationships are derived for practical application. Motivations include encouraging appropriate convergence of traditionally separate technical disciplines within the rapidly growing offshore wind energy industry.
Lauren A. Mudd and Peter J. Vickery
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-123, https://doi.org/10.5194/wes-2024-123, 2024
Revised manuscript accepted for WES
Short summary
Short summary
This research presents an assessment of hurricane risk to offshore wind turbine systems in the Gulf of Mexico. Hurricanes that frequent this area can potentially exceed design limits prescribed by the International Electrotechnical Commission (IEC) wind design standards. Translations between the well-established Saffir-Simpson scale and the IEC design classes were developed to convert to communicate of hurricane severity in terms of design load conditions familiar to wind turbine designers.
Maarten Paul van der Laan, Mark Kelly, Mads Baungaard, Antariksh Dicholkar, and Emily Louise Hodgson
Wind Energ. Sci., 9, 1985–2000, https://doi.org/10.5194/wes-9-1985-2024, https://doi.org/10.5194/wes-9-1985-2024, 2024
Short summary
Short summary
Wind turbines are increasing in size and operate more frequently above the atmospheric surface layer, which requires improved inflow models for numerical simulations of turbine interaction. In this work, a novel steady-state model of the atmospheric boundary layer (ABL) is introduced. Numerical wind turbine flow simulations subjected to shallow and tall ABLs are conducted, and the proposed model shows improved performance compared to other state-of-the-art steady-state models.
Rachel Robey and Julie K. Lundquist
Wind Energ. Sci., 9, 1905–1922, https://doi.org/10.5194/wes-9-1905-2024, https://doi.org/10.5194/wes-9-1905-2024, 2024
Short summary
Short summary
Measurements of wind turbine wakes with scanning lidar instruments contain complex errors. We model lidars in a simulated environment to understand how and why the measured wake may differ from the true wake and validate the results with observational data. The lidar smooths out the wake, making it seem more spread out and the slowdown of the winds less pronounced. Our findings provide insights into best practices for accurately measuring wakes with lidar and interpreting observational data.
Lindsay M. Sheridan, Jiali Wang, Caroline Draxl, Nicola Bodini, Caleb Phillips, Dmitry Duplyakin, Heidi Tinnesand, Raj K. Rai, Julia E. Flaherty, Larry K. Berg, Chunyong Jung, and Ethan Young
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-115, https://doi.org/10.5194/wes-2024-115, 2024
Revised manuscript accepted for WES
Short summary
Short summary
Three recent wind resource datasets are assessed for their skills in representing annual average wind speeds and seasonal, diurnal, and inter-annual trends in the wind resource to support customers interested in small and midsize wind energy.
Jonathan D. Rogers
Wind Energ. Sci., 9, 1849–1868, https://doi.org/10.5194/wes-9-1849-2024, https://doi.org/10.5194/wes-9-1849-2024, 2024
Short summary
Short summary
This paper describes the results of a flight experiment to assess the existence of potential safety risks to a general aviation aircraft from added turbulence in the wake of a wind turbine. A general aviation aircraft was flown through the wake of an operating wind turbine at different downwind distances. Results indicated that there were small increases in disturbances to the aircraft due to added turbulence in the wake, but they never approached levels that would pose a safety risk.
Rémi Gandoin and Jorge Garza
Wind Energ. Sci., 9, 1727–1745, https://doi.org/10.5194/wes-9-1727-2024, https://doi.org/10.5194/wes-9-1727-2024, 2024
Short summary
Short summary
ERA5 has become the workhorse of most wind resource assessment applications, as it compares better with in situ measurements than other reanalyses. However, for design purposes, ERA5 suffers from a drawback: it underestimates strong wind speeds offshore (approx. from 10 m s−1). This is not widely discussed in the scientific literature. We address this bias and proposes a simple, robust correction. This article supports the growing need for use-case-specific validations of reanalysis datasets.
Lukas Vollmer, Balthazar Arnoldus Maria Sengers, and Martin Dörenkämper
Wind Energ. Sci., 9, 1689–1693, https://doi.org/10.5194/wes-9-1689-2024, https://doi.org/10.5194/wes-9-1689-2024, 2024
Short summary
Short summary
This study proposes a modification to a well-established wind farm parameterization used in mesoscale models. The wind speed at the location of the turbine, which is used to calculate power and thrust, is corrected to approximate the free wind speed. Results show that the modified parameterization produces more accurate estimates of the turbine’s power curve.
Mostafa Bakhoday Paskyabi
Wind Energ. Sci., 9, 1631–1645, https://doi.org/10.5194/wes-9-1631-2024, https://doi.org/10.5194/wes-9-1631-2024, 2024
Short summary
Short summary
The exchange of momentum and energy between the atmosphere and ocean depends on air–sea processes, especially wave-related ones. Precision in representing these interactions is vital for offshore wind turbine and farm design and operation. The development of a reliable wave–turbulence decomposition method to remove wave-induced interference from single-height wind measurements is essential for these applications and enhances our grasp of wind coherence within the wave boundary layer.
Cássia Maria Leme Beu and Eduardo Landulfo
Wind Energ. Sci., 9, 1431–1450, https://doi.org/10.5194/wes-9-1431-2024, https://doi.org/10.5194/wes-9-1431-2024, 2024
Short summary
Short summary
Extrapolating the wind profile for complex terrain through the long short-term memory model outperformed the traditional power law methodology, which due to its universal nature cannot capture local features as the machine-learning methodology does. Moreover, considering the importance of investigating the wind potential and the need for alternative energy sources, it is motivating to find that a short observational campaign can produce better results than the traditional techniques.
Daniel R. Houck, Nathaniel B. de Velder, David C. Maniaci, and Brent C. Houchens
Wind Energ. Sci., 9, 1189–1209, https://doi.org/10.5194/wes-9-1189-2024, https://doi.org/10.5194/wes-9-1189-2024, 2024
Short summary
Short summary
Experiments offer incredible value to science, but results must come with an uncertainty quantification to be meaningful. We present a method to simulate a proposed experiment, calculate uncertainties, and determine the measurement duration (total time of measurements) and the experiment duration (total time to collect the required measurement data when including condition variability and time when measurement is not occurring) required to produce statistically significant and converged results.
Daphne Quint, Julie K. Lundquist, Nicola Bodini, and David Rosencrans
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-53, https://doi.org/10.5194/wes-2024-53, 2024
Revised manuscript accepted for WES
Short summary
Short summary
Offshore wind farms along the US east coast can have limited effects on local weather. Studying this, we used a weather model to compare conditions with and without wind farms near Massachusetts and Rhode Island. We analyzed changes in wind, temperature, and turbulence. Results show reduced wind speeds near and downwind of wind farms, especially during stability and high winds. Turbulence increases near wind farms, affecting boundary-layer height and wake size.
Xu Ning and Mostafa Bakhoday-Paskyabi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-38, https://doi.org/10.5194/wes-2024-38, 2024
Revised manuscript accepted for WES
Short summary
Short summary
Waves interact with the overlying wind field by modifying the stresses at the atmosphere-ocean interface. We develop and employ a parameterization method of wave-induced stresses in the numerical simulation of an offshore wind farm in a stable atmospheric boundary layer. This work demonstrates how swells change the kinetic energy transport, and induce wind veer and wake deflection, leading to significant variations in the power output of wind turbines at different positions of the wind farm.
Oscar García-Santiago, Andrea N. Hahmann, Jake Badger, and Alfredo Peña
Wind Energ. Sci., 9, 963–979, https://doi.org/10.5194/wes-9-963-2024, https://doi.org/10.5194/wes-9-963-2024, 2024
Short summary
Short summary
This study compares the results of two wind farm parameterizations (WFPs) in the Weather Research and Forecasting model, simulating a two-turbine array under three atmospheric stabilities with large-eddy simulations. We show that the WFPs accurately depict wind speeds either near turbines or in the far-wake areas, but not both. The parameterizations’ performance varies by variable (wind speed or turbulent kinetic energy) and atmospheric stability, with reduced accuracy in stable conditions.
Til Kristian Vrana and Harald G. Svendsen
Wind Energ. Sci., 9, 919–932, https://doi.org/10.5194/wes-9-919-2024, https://doi.org/10.5194/wes-9-919-2024, 2024
Short summary
Short summary
We developed new ways to plot comprehensive wind resource maps that show the revenue potential of different locations for future wind power developments. The relative capacity factor is introduced as an indicator showing the expected mean power output. The market value factor is introduced, which captures the expected mean market value relative to other wind parks. The Renewable Energy Complementarity (RECom) index combines the two into a single index, resulting in the RECom map.
Scott Dallas, Adam Stock, and Edward Hart
Wind Energ. Sci., 9, 841–867, https://doi.org/10.5194/wes-9-841-2024, https://doi.org/10.5194/wes-9-841-2024, 2024
Short summary
Short summary
This review presents the current understanding of wind direction variability in the context of control-oriented modelling of wind turbines and wind farms in a manner suitable to a wide audience. Motivation comes from the significant and commonly seen yaw error of horizontal axis wind turbines, which carries substantial negative impacts on annual energy production and the levellised cost of wind energy. Gaps in the literature are identified, and the critical challenges in this area are discussed.
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Ville Vakkari, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 9, 821–840, https://doi.org/10.5194/wes-9-821-2024, https://doi.org/10.5194/wes-9-821-2024, 2024
Short summary
Short summary
Knowing the wind speed across the rotor of a wind turbine is key in making good predictions of the power production. However, models struggle to capture both the speed and the shape of the wind profile. Using machine learning methods based on the model data, we show that the predictions can be improved drastically. The work focuses on three coastal sites, spread over the Northern Hemisphere (the Baltic Sea, the North Sea, and the US Atlantic coast) with similar results for all sites.
Lindsay M. Sheridan, Raghavendra Krishnamurthy, William I. Gustafson Jr., Ye Liu, Brian J. Gaudet, Nicola Bodini, Rob K. Newsom, and Mikhail Pekour
Wind Energ. Sci., 9, 741–758, https://doi.org/10.5194/wes-9-741-2024, https://doi.org/10.5194/wes-9-741-2024, 2024
Short summary
Short summary
In 2020, lidar-mounted buoys owned by the US Department of Energy (DOE) were deployed off the California coast in two wind energy lease areas and provided valuable year-long analyses of offshore low-level jet (LLJ) characteristics at heights relevant to wind turbines. In addition to the LLJ climatology, this work provides validation of LLJ representation in atmospheric models that are essential for assessing the potential energy yield of offshore wind farms.
Eliot Quon
Wind Energ. Sci., 9, 495–518, https://doi.org/10.5194/wes-9-495-2024, https://doi.org/10.5194/wes-9-495-2024, 2024
Short summary
Short summary
Engineering models used to design wind farms generally do not account for realistic atmospheric conditions that can rapidly evolve from minute to minute. This paper uses a first-principles simulation technique to predict the performance of five wind turbines during a wind farm control experiment. Challenges included limited observations and atypical conditions. The simulation accurately predicts the aerodynamics of a turbine when it is situated partially within the wake of an upstream turbine.
Lars Neuhaus, Matthias Wächter, and Joachim Peinke
Wind Energ. Sci., 9, 439–452, https://doi.org/10.5194/wes-9-439-2024, https://doi.org/10.5194/wes-9-439-2024, 2024
Short summary
Short summary
Future wind turbines reach unprecedented heights and are affected by wind conditions that have not yet been studied in detail. With increasing height, a transition to laminar conditions with a turbulent–non-turbulent interface (TNTI) becomes more likely. In this paper, the presence and fractality of this TNTI in the atmosphere are studied. Typical fractalities known from ideal laboratory and numerical studies and a frequent occurrence of the TNTI at heights of multi-megawatt turbines are found.
Sebastiano Stipa, Arjun Ajay, Dries Allaerts, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 297–320, https://doi.org/10.5194/wes-9-297-2024, https://doi.org/10.5194/wes-9-297-2024, 2024
Short summary
Short summary
In the current study, we introduce TOSCA (Toolbox fOr Stratified Convective Atmospheres), an open-source computational fluid dynamics (CFD) tool, and demonstrate its capabilities by simulating the flow around a large wind farm, operating in realistic flow conditions. This is one of the grand challenges of the present decade and can yield better insight into physical phenomena that strongly affect wind farm operation but which are not yet fully understood.
Rebecca Foody, Jacob Coburn, Jeanie A. Aird, Rebecca J. Barthelmie, and Sara C. Pryor
Wind Energ. Sci., 9, 263–280, https://doi.org/10.5194/wes-9-263-2024, https://doi.org/10.5194/wes-9-263-2024, 2024
Short summary
Short summary
Using lidar-derived wind speed measurements at approx. 150 m height at onshore and offshore locations, we quantify the advantages of deploying wind turbines offshore in terms of the amount of electrical power produced and the higher reliability and predictability of the electrical power.
Ronald B. Smith
Wind Energ. Sci., 9, 253–261, https://doi.org/10.5194/wes-9-253-2024, https://doi.org/10.5194/wes-9-253-2024, 2024
Short summary
Short summary
Recent papers have investigated the impact of turbine drag on local wind patterns, but these studies have not given a full explanation of the induced pressure field. The pressure field blocks and deflects the wind and in other ways modifies farm efficiency. Current gravity wave models are complex and provide no estimation tools. We dig deeper into the cause of the pressure field and provide approximate closed-form expressions for pressure field effects.
Cédric Raibaudo, Jean-Christophe Gilloteaux, and Laurent Perret
Wind Energ. Sci., 8, 1711–1725, https://doi.org/10.5194/wes-8-1711-2023, https://doi.org/10.5194/wes-8-1711-2023, 2023
Short summary
Short summary
The work presented here proposes interfacing experimental measurements performed in a wind tunnel with simulations conducted with the aeroelastic code FAST and applied to a floating wind turbine model under wave-induced motion. FAST simulations using experiments match well with those obtained using the inflow generation method provided by TurbSim. The highest surge motion frequencies show a significant decrease in the mean power produced by the turbine and a mitigation of the flow dynamics.
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 8, 1651–1658, https://doi.org/10.5194/wes-8-1651-2023, https://doi.org/10.5194/wes-8-1651-2023, 2023
Short summary
Short summary
Low-level jets (LLJs) are special types of non-ideal wind profiles affecting both wind energy production and loads on a wind turbine. However, among LLJ researchers, there is no consensus regarding which definition to use to identify these profiles. In this work, we compare two different ways of identifying the LLJ – the falloff definition and the shear definition – and argue why the shear definition is better suited to wind energy applications.
Serkan Kartal, Sukanta Basu, and Simon J. Watson
Wind Energ. Sci., 8, 1533–1551, https://doi.org/10.5194/wes-8-1533-2023, https://doi.org/10.5194/wes-8-1533-2023, 2023
Short summary
Short summary
Peak wind gust is a crucial meteorological variable for wind farm planning and operations. Unfortunately, many wind farms do not have on-site measurements of it. In this paper, we propose a machine-learning approach (called INTRIGUE, decIsioN-TRee-based wInd GUst Estimation) that utilizes numerous inputs from a public-domain reanalysis dataset, generating long-term, site-specific peak wind gust series.
Nikolas Angelou, Jakob Mann, and Camille Dubreuil-Boisclair
Wind Energ. Sci., 8, 1511–1531, https://doi.org/10.5194/wes-8-1511-2023, https://doi.org/10.5194/wes-8-1511-2023, 2023
Short summary
Short summary
This study presents the first experimental investigation using two nacelle-mounted wind lidars that reveal the upwind and downwind conditions relative to a full-scale floating wind turbine. We find that in the case of floating wind turbines with small pitch and roll oscillating motions (< 1°), the ambient turbulence is the main driving factor that determines the propagation of the wake characteristics.
Julian Quick, Pierre-Elouan Rethore, Mads Mølgaard Pedersen, Rafael Valotta Rodrigues, and Mikkel Friis-Møller
Wind Energ. Sci., 8, 1235–1250, https://doi.org/10.5194/wes-8-1235-2023, https://doi.org/10.5194/wes-8-1235-2023, 2023
Short summary
Short summary
Wind turbine positions are often optimized to avoid wake losses. These losses depend on atmospheric conditions, such as the wind speed and direction. The typical optimization scheme involves discretizing the atmospheric inputs, then considering every possible set of these discretized inputs in every optimization iteration. This work presents stochastic gradient descent (SGD) as an alternative, which randomly samples the atmospheric conditions during every optimization iteration.
Sarah J. Ollier and Simon J. Watson
Wind Energ. Sci., 8, 1179–1200, https://doi.org/10.5194/wes-8-1179-2023, https://doi.org/10.5194/wes-8-1179-2023, 2023
Short summary
Short summary
This modelling study shows that topographic trapped lee waves (TLWs) modify flow behaviour and power output in offshore wind farms. We demonstrate that TLWs can substantially alter the wind speeds at individual wind turbines and effect the power output of the turbine and whole wind farm. The impact on wind speeds and power is dependent on which part of the TLW wave cycle interacts with the wind turbines and wind farm. Positive and negative impacts of TLWs on power output are observed.
Khaled Yassin, Arne Helms, Daniela Moreno, Hassan Kassem, Leo Höning, and Laura J. Lukassen
Wind Energ. Sci., 8, 1133–1152, https://doi.org/10.5194/wes-8-1133-2023, https://doi.org/10.5194/wes-8-1133-2023, 2023
Short summary
Short summary
The current turbulent wind field models stated in the IEC 61400-1 standard underestimate the probability of extreme changes in wind velocity. This underestimation can lead to the false calculation of extreme and fatigue loads on the turbine. In this work, we are trying to apply a random time-mapping technique to one of the standard turbulence models to adapt to such extreme changes. The turbulent fields generated are compared with a standard wind field to show the effects of this new mapping.
Mark Kelly and Maarten Paul van der Laan
Wind Energ. Sci., 8, 975–998, https://doi.org/10.5194/wes-8-975-2023, https://doi.org/10.5194/wes-8-975-2023, 2023
Short summary
Short summary
The turning of the wind with height, which is known as veer, can affect wind turbine performance. Thus far meteorology has only given idealized descriptions of veer, which has not yet been related in a way readily usable for wind energy. Here we derive equations for veer in terms of meteorological quantities and provide practically usable forms in terms of measurable shear (change in wind speed with height). Flow simulations and measurements at turbine heights support these developments.
Moritz Gräfe, Vasilis Pettas, Julia Gottschall, and Po Wen Cheng
Wind Energ. Sci., 8, 925–946, https://doi.org/10.5194/wes-8-925-2023, https://doi.org/10.5194/wes-8-925-2023, 2023
Short summary
Short summary
Inflow wind field measurements from nacelle-based lidar systems offer great potential for different applications including turbine control, load validation and power performance measurements. On floating wind turbines nacelle-based lidar measurements are affected by the dynamic behavior of the floating foundations. Therefore, the effects on lidar wind speed measurements induced by floater dynamics must be well understood. A new model for quantification of these effects is introduced in our work.
Robin Marcille, Maxime Thiébaut, Pierre Tandeo, and Jean-François Filipot
Wind Energ. Sci., 8, 771–786, https://doi.org/10.5194/wes-8-771-2023, https://doi.org/10.5194/wes-8-771-2023, 2023
Short summary
Short summary
A novel data-driven method is proposed to design an optimal sensor network for the reconstruction of offshore wind resources. Based on unsupervised learning of numerical weather prediction wind data, it provides a simple yet efficient method for the siting of sensors, outperforming state-of-the-art methods for this application. It is applied in the main French offshore wind energy development areas to provide guidelines for the deployment of floating lidars for wind resource assessment.
Wei Fu, Alessandro Sebastiani, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 8, 677–690, https://doi.org/10.5194/wes-8-677-2023, https://doi.org/10.5194/wes-8-677-2023, 2023
Short summary
Short summary
Nacelle lidars with different beam scanning locations and two types of systems are considered for inflow turbulence estimations using both numerical simulations and field measurements. The turbulence estimates from a sonic anemometer at the hub height of a Vestas V52 turbine are used as references. The turbulence parameters are retrieved using the radial variances and a least-squares procedure. The findings from numerical simulations have been verified by the analysis of the field measurements.
Daniel Hatfield, Charlotte Bay Hasager, and Ioanna Karagali
Wind Energ. Sci., 8, 621–637, https://doi.org/10.5194/wes-8-621-2023, https://doi.org/10.5194/wes-8-621-2023, 2023
Short summary
Short summary
Wind observations at heights relevant to the operation of modern offshore wind farms, i.e. 100 m and more, are required to optimize their positioning and layout. Satellite wind retrievals provide observations of the wind field over large spatial areas and extensive time periods, yet their temporal resolution is limited and they are only representative at 10 m height. Machine-learning models are applied to lift these satellite winds to higher heights, directly relevant to wind energy purposes.
Anna von Brandis, Gabriele Centurelli, Jonas Schmidt, Lukas Vollmer, Bughsin' Djath, and Martin Dörenkämper
Wind Energ. Sci., 8, 589–606, https://doi.org/10.5194/wes-8-589-2023, https://doi.org/10.5194/wes-8-589-2023, 2023
Short summary
Short summary
We propose that considering large-scale wind direction changes in the computation of wind farm cluster wakes is of high relevance. Consequently, we present a new solution for engineering modeling tools that accounts for the effect of such changes in the propagation of wakes. The new model is evaluated with satellite data in the German Bight area. It has the potential to reduce uncertainty in applications such as site assessment and short-term power forecasting.
Oliver Maas
Wind Energ. Sci., 8, 535–556, https://doi.org/10.5194/wes-8-535-2023, https://doi.org/10.5194/wes-8-535-2023, 2023
Short summary
Short summary
The study compares small vs. large wind farms regarding the flow and power output with a turbulence-resolving simulation model. It shows that a large wind farm (90 km length) significantly affects the wind direction and that the wind speed is higher in the large wind farm wake. Both wind farms excite atmospheric gravity waves that also affect the power output of the wind farms.
Regis Thedin, Eliot Quon, Matthew Churchfield, and Paul Veers
Wind Energ. Sci., 8, 487–502, https://doi.org/10.5194/wes-8-487-2023, https://doi.org/10.5194/wes-8-487-2023, 2023
Short summary
Short summary
We investigate coherence and correlation and highlight their importance for disciplines like wind energy structural dynamic analysis, in which blade loading and fatigue depend on turbulence structure. We compare coherence estimates to those computed using a model suggested by international standards. We show the differences and highlight additional information that can be gained using large-eddy simulation, further improving analytical coherence models used in synthetic turbulence generators.
Cited articles
Arnal, D., Gasparian, G., and Salinas, H.: Recent Advances in Theoretical
Methods for Laminar-Turbulent Transition Prediction, in: 36th AIAA Aerospace
Sciences Meeting and Exhibit, 12–15 January 1998, Reno, NV, USA, https://doi.org/10.2514/6.1998-223, 1998. a
Asada, K. and Kawai, S.: Large-eddy simulation of airfoil flow near stall
condition at Reynolds number 2.1×106, Phys. Fluids, 30, 1139–1145, 2018. a
Boorsma, K., Schepers, J. G., Gomez-Iradi, S., Herraez, I., Lutz, T., Weihing, P., Oggiano, L., Pirrung, G., Madsen, H. A., Shen, W. Z., Rahimi, H., and Schaffarczyk, A. P.: Final report of IEA Wind Task 29 Mexnext (Phase 3), Tech. Rep. ECN-E–18-003, ECN Publications, https://publicaties.ecn.nl/PdfFetch.aspx?nr=ECN-E--18-003 (last access: 1 May 2022), 2018. a
Breuer, M.: A challenging test case for large-eddy simulation: High Reynolds number circular cylinder flow, Int. J. Heat Fluid Flow, 21, 648–654, https://doi.org/10.1016/S0142-727X(00)00056-4, 2000. a, b
Breuer, M.: Effect of inflow turbulence on an airfoil flow with laminar
separation bubble: An LES study, J. Flow Turbul. Combust., 101, 433–456, https://doi.org/10.1007/s10494-017-9890-2, 2018. a, b
Buhl, M.: WTchar'_perf user's guide, Tech. rep., NREL, 2004. a
Butler, K. M. and Farrell, B. F.: Three-dimensional optimal perturbations in
viscous shear flow, Phys. Fluids, 4, 1637–1650, https://doi.org/10.1063/1.858386, 1992. a
De Nayer, G., Schmidt, S., Wood, J. N., and Breuer, M.: Enhanced injection
method for synthetically generated turbulence within the flow domain of
eddy-resolving simulations, Comput. Math. Appl., 75, 2338–2355, https://doi.org/10.1016/j.camwa.2017.12.012, 2018. a
FieldView: FieldView Reference Manual, Intelligent Light, 2017. a
FLOWer: Installation and User Manual of the FLOWer Main Version,
Release 1-2008.1, Tech. rep., Deutsches Zentrum für Luft- und
Raumfahrt e.V., Institute of Aerodynamics and Flow Technology, Göttingen, Germany, 2008. a
Gao, W., Zhang, W., Cheng, W., and Samtaney, R.: Wall-modelled large-eddy
simulation of turbulent flow past airfoils, J. Fluid Mech., 873, 174–210,
2019. a
Germano, M., Piomelli, U., Moin, P., and Cabot, W. H.: A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3, 1760–1765, 1991. a
Hansen, M. O. L., Sørensen, N. N., and Michelsen, J. A.: Extraction of lift, drag and angle of attack from computed 3-D viscous flow around a rotating blade, in: 1997 European Wind Energy Conference, Irish Wind Energy Association, 499–502, ISBN 0-9533922-0-1, 1997. a
Hunt, J. C. R. and Carruthers, D. J.: Rapid distortion theory and the `problems' of turbulence, J. Fluid Mech., 212, 497,
https://doi.org/10.1017/S0022112090002075, 1990. a, b
Jacobs, R. G. and Durbin, P. A.: Shear sheltering and the continuous spectrum
of the Orr–Sommerfeld equation, Phys. Fluids, 10, 2006–2011, https://doi.org/10.1063/1.869716, 1998. a, b
Kaimal, J. C.: Turbulence spectra, length scales and structure parameters in
the stable surface layer, Bound.-Lay. Meteorol., 4, 289–309, https://doi.org/10.1007/BF02265239, 1973. a
Kempf, A., Wysocki, S., and Pettit, M.: An efficient, parallel low-storage
implementation of Klein's turbulence generator for LES and DNS, Comput. Fluids, 60, 58–60, 2012. a
Klebanoff, P. S., Tidstrom, K. D., and Sargent, L. M.: The three-dimensional
nature of boundary-layer instability, J. Fluid Mech., 12, 1–34,
https://doi.org/10.1017/S0022112062000014, 1962. a, b
Kline, S. J., Reynolds, W. C., Schraub, F. A., and Runstadler, P. W.: The
structure of turbulent boundary layers, J. Fluid Mech., 30, 741–773,
https://doi.org/10.1017/S0022112067001740, 1967. a
Krimmelbein, N.: TAU Transition module (V9.30) User Guide (V1.04), Tech. rep., DLR, German Aerospace Association, Institute of Aerodynamics and Flow Technology, 2009. a
Larsen, T. and Hansen, A.: How 2 HAWC2, the user's manual, Risoe-R-1597, Forskningscenter Risoe, Denmark, 2007. a
Lilly, D. K.: A proposed modification of the Germano subgrid-scale closure
method, Phys. Fluids A, 4, 633–635, 1992. a
Lobo, B. A., Boorsma, K., and Schaffarczyk, A. P.: Investigation into boundary layer transition on the MEXICO blade, J. Phys.: Conf. Ser., 1037, 052020, https://doi.org/10.1088/1742-6596/1037/5/052020, 2018. a
Lobo, B. A., Schaffarczyk, A. P., and Breuer, M.: Investigation into boundary
layer transition using wall-resolved large-eddy simulations and modeled
inflow turbulence, Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022, 2022. a, b
Mack, L. M.: Transition and Laminar Instability, No. NASA-CP-153203, NASA Jet
Propulsion Laboratory, California, https://ntrs.nasa.gov/citations/19770017114 (last access: 1 May 2022), 1977. a
Madsen, H. A., Bak, C., Paulsen, U. S., Gaunaa, M., Fuglsang, P., Romblad, J., Olesen, N., P., E., Laursen, J., and Jensen, L.: The DAN-AERO MW Experiments, Tech. Rep. No. Risø-R-1726(EN), Danmarks Tekniske Universitet, Risø National laboratoriet for Bæredygtig Energi, https://www.osti.gov/etdeweb/biblio/990865 (last access: 1 May 2022), 2010a. a, b
Madsen, H. A., Bak, C., Paulsen, U. S., Gaunaa, M., Sørensen, N., Fuglsang, P., Romblad, J., Olesen, N. A., Enevoldsen, P., Laursen, J., and Jensen, L.: The DAN-AERO MW Experiments, AIAA 2010-645, in: 48th AIAA Aerospace Sciences Meeting and Exhibit, 4–7 January 2010, Orlando, Florida,
https://doi.org/10.2514/6.2010-645, 2010b. a, b, c
Madsen, H. A., Özçakmak, Ö. S., Bak, C., Troldborg, N.,
Sørensen, N. N., and Sørensen, J. N.: Transition characteristics measured on a 2 MW 80 m diameter wind turbine rotor in comparison with
transition data from wind tunnel measurements, in: AIAA Scitech 2019 Forum,
American Institute of Aeronautics and Astronautics, https://doi.org/10.2514/6.2019-0801, 2019. a, b, c
Menter, F. R.: Two-equation eddy-viscosity turbulence models for engineering
applications, AIAA J., 32, 1598–1605, 1994. a
Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G., and
Völker, S.: A correlation-based transition model using local variables – part I: Model formulation, J. Turbomach. Trans. ASME, 128, 413–422, https://doi.org/10.1115/1.2184352, 2006. a
Michelsen, J. A.: Basis3D – A platform for development of multiblock PDE
solvers, Tech. rep., Technical Report AFM 92-05, Technical University of
Denmark, https://orbit.dtu.dk/en/publications/basis3d-a-platform-for-development-of-multiblock-pde-solvers-%CE%B2-re (last access: 1 May 2022), 1992. a, b
Morkovin, M. V.: On the many faces of transition, in: Viscous Drag Reduction,
edited by: Wells, C. S., Springer, Boston, MA, 1–31,
https://doi.org/10.1007/978-1-4899-5579-1_1, 1969. a
Özçakmak, Ö.: Laminar-Turbulent Boundary Layer Transition
Characteristics of Wind Turbine Rotors: A numerical and experimental
investigation, PhD thesis, DTU Wind Energy, Denmark, https://orbit.dtu.dk/en/publications/laminar-turbulent-boundary-layer-transition-characteristics-of-wi (last access: 1 May 2022), 2020. a, b, c
Özçakmak, Ö. S., Madsen, H. A., Sørensen, N., Sørensen, J. N., Fischer, A., and Bak, C.: Inflow Turbulence and Leading Edge Roughness
Effects on Laminar-Turbulent Transition on NACA 63-418 Airfoil, J. Phys.: Conf. Ser., 1037, 022005, https://doi.org/10.1088/1742-6596/1037/2/022005, 2018. a
Özçakmak, Ö. S., Sørensen, N. N., Madsen, H. A., and
Sørensen, J. N.: Laminar-turbulent transition detection on airfoils by
high-frequency microphone measurements, Wind Energy, 22, 1356–1370, https://doi.org/10.1002/we.2361, 2019. a, b, c, d
Özlem, C. Y., Pires, O., Munduate, X., Sørensen, N., Reichstein, T.,
Schaffarczyk, A. P., Diakakis, K., Papadakis, G., Daniele, E., Schwarz, M.,
Lutz, T., and Prieto, R.: Summary of the blind test campaign to predict high
Reynolds number performance of DU00-W-210 airfoil, AIAA 2017-0915, 0915,
https://doi.org/10.2514/6.2017-0915, 2017. a
Piomelli, U. and Chasnov, J R.: Large-eddy simulations: Theory and
Applications, in: Turbulence and Transition Modeling, edited by: Hallbäck, M., Henningson, D., Johansson, A., and Alfredson, P., Kluwer, 269–331, ISBN 978-90-481-4707-6, https://doi.org/10.1007/978-94-015-8666-5_7, 1996. a
Pires, O., Munduate, X., Boorsma, K., Ceyhan, O., Alting, I., Vimalakanthan,
K., Madsen, H., Hansen, P., Özçakmak, O. S., Fischer, A., and
Timmer, W. A.: Experimental Investigation of Surface Roughness Effects and
Transition on Wind Turbine Performance, Tech. rep., IRPWind Integrated Research Programme on Wind Energy, https://doi.org/10.1088/1742-6596/1037/5/052018, 2018. a
Reed, H. L. and Saric, W.: Stability of three-dimensional boundary layers, J.
Comput. Phys., 21, 235–284, 1989. a
Reichstein, T., Schaffarczyk, A. P., Dollinger, C., Balaresque, N., Schülein, E., Jauch, C., and Fischer, A.: Investigation of laminar-turbulent transition on a rotating wind-turbine blade of multimegawatt class with thermography and microphone array, Energies, 12,
2102, https://doi.org/10.3390/en12112102, 2019. a, b, c, d, e, f
Reshotko, E.: Boundary-layer stability and transition, Annu. Rev. Fluid Mech., 8, 311–349, 1976. a
Schaffarczyk, A., Lobo, B., and Madsen, H.: Final report of Task 29 Phase IV
– Task 3.6: Boundary Layer Transition, Tech. rep., Zenodo, https://doi.org/10.5281/zenodo.4817875, 2021. a, b, c
Schaffarczyk, A. P., Schwab, D., and Breuer, M.: Experimental detection of
laminar-turbulent transition on a rotating wind turbine blade in the free
atmosphere, Wind Energy, 20, 211–220, https://doi.org/10.1002/we.2001, 2017. a, b, c, d
Schaffarczyk, A. P., Boisard, R., Boorsma, K., Dose, B., Lienard, C., Lutz, T., Madsen, H. A., Rahimi, H., Reichstein, T., Schepers, G., Sørensen, N.,
Stoevesandt, B., and Weihing, P.: Comparison of 3D transitional CFD simulations for rotating wind turbine wings with measurements, J. Phys.:
Conf. Ser., 1037, 022012, https://doi.org/10.1088/1742-6596/1037/2/022012, 2018. a
Schmidt, S. and Breuer, M.: Source term based synthetic turbulence inflow
generator for eddy-resolving predictions of an airfoil flow including a laminar separation bubble, Comput. Fluids, 146, 1–22,
https://doi.org/10.1016/j.compfluid.2016.12.023, 2017. a, b
Schwab, D., Ingwersen, S., Schaffarczyk, A. P., and Breuer, M.: Aerodynamic
Boundary Layer Investigation on a Wind Turbine Blade under Real Conditions,
in: Wind Energy – Impact of Turbulence, edited by: Hölling, M., Peinke,
J., and Ivanell, S., Springer, Berlin, Heidelberg, 203–208, https://doi.org/10.1007/978-3-642-54696-9_30, 2014. a
Seitz, A. and Horstmann, K.-H.: In-flight Investigation of Tollmien–Schlichtung Waves, in: IUTAM Symposium on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 12–14 August 2004, Springer, 115–124, https://doi.org/10.1007/978-1-4020-4150-1_11, 2006. a
Smagorinsky, J.: General circulation experiments with the primitive equations, I, The basic experiment, Mon. Weather Rev., 91, 99–165, 1963. a
Solís-Gallego, I., Argüelles Díaz, K. M., Fernández Oro, J. M., and Velarde-Suárez, S.: Wall-resolved LES modeling of a wind
turbine airfoil at different angles of attack, J. Mar. Sci. Eng., 8, 212, https://doi.org/10.3390/jmse8030212, 2020. a
Suzen, Y. B. and Huang, P. G.: Modeling of flow transition using an intermittency transport equation, J. Fluids Eng., 122, 273–284, 2000. a
TAU: TAU-Code User Guide, Release 2018.1.0, Tech. rep., Deutsches Zentrum für Luft- und Raumfahrt e.V., Institute of Aerodynamics and Flow Technology, Göttingen, Germany, 2018. a
Vaughan, N. J. and Zaki, T. A.: Stability of zero-pressure-gradient boundary
layer distorted by unsteady Klebanoff streaks, J. Fluid Mech., 681, 116–153, https://doi.org/10.1017/jfm.2011.177, 2011. a
Zaki, T. A.: From streaks to spots and on to turbulence: Exploring the dynamics of boundary layer transition, Appl. Sci. Res., 91, 451–473,
https://doi.org/10.1007/s10494-013-9502-8, 2013. a
Short summary
Results from the DAN-AERO and aerodynamic glove projects provide significant findings. The effects of inflow turbulence on transition and wind turbine blades are compared to computational fluid dynamic simulations. It is found that the transition scenario changes even over a single revolution. The importance of a suitable choice of amplification factor is evident from the simulations. An agreement between the power spectral density plots from the experiment and large-eddy simulations is seen.
Results from the DAN-AERO and aerodynamic glove projects provide significant findings. The...
Altmetrics
Final-revised paper
Preprint