Articles | Volume 9, issue 8
https://doi.org/10.5194/wes-9-1765-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-1765-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigation of blade flexibility effects on the loads and wake of a 15 MW wind turbine using a flexible actuator line method
Francois Trigaux
CORRESPONDING AUTHOR
Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
Philippe Chatelain
Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
Grégoire Winckelmans
Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
Related authors
No articles found.
Emmanuel Gillyns, Sophia Buckingham, Jeroen van Beeck, and Grégoire Winckelmans
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-242, https://doi.org/10.5194/wes-2025-242, 2025
Preprint under review for WES
Short summary
Short summary
This study evaluates the Actuator Line Method (ALM) for simulating wind turbine wakes by comparing it with wind tunnel tests on a small-scale turbine (TWIST). ALM accurately captured key wake features like velocity deficit in the wake and sharp transition with the undisturbed flow. Additionally, the deformation of the blades is also evaluated. The results confirming ALM as a reliable tool for aerodynamic and structural analysis in wind energy.
Marcus Becker, Maxime Lejeune, Philippe Chatelain, Dries Allaerts, Rafael Mudafort, and Jan-Willem van Wingerden
Wind Energ. Sci., 10, 1055–1075, https://doi.org/10.5194/wes-10-1055-2025, https://doi.org/10.5194/wes-10-1055-2025, 2025
Short summary
Short summary
Established turbine wake models are steady-state. This paper presents an open-source dynamic wake modeling framework that complements established steady-state wake models with dynamics. It is advantageous over steady-state wake models to describe wind farm power and energy over shorter periods. The model enables researchers to investigate the effectiveness of wind farm flow control strategies. This leads to a better utilization of wind farms and allows them to be used to their fullest extent.
Marion Coquelet, Maxime Lejeune, Laurent Bricteux, Aemilius A. W. van Vondelen, Jan-Willem van Wingerden, and Philippe Chatelain
Wind Energ. Sci., 9, 1923–1940, https://doi.org/10.5194/wes-9-1923-2024, https://doi.org/10.5194/wes-9-1923-2024, 2024
Short summary
Short summary
An extended Kalman filter is used to estimate the wind impinging on a wind turbine based on the blade bending moments and a turbine model. Using large-eddy simulations, this paper verifies how robust the estimator is to the turbine control strategy as it impacts loads and operating parameters. It is shown that including dynamics in the turbine model to account for delays between actuation and bending moments is needed to maintain the accuracy of the estimator when dynamic pitch control is used.
Cited articles
Caprace, D.-G., Chatelain, P., and Winckelmans, G.: Lifting Line with Various Mollifications: Theory and Application to an Elliptical Wing, AIAA Journal, 57, 17–28, https://doi.org/10.2514/1.J057487, 2019. a, b, c, d
Churchfield, M. J., Schreck, S. J., Martinez, L. A., Meneveau, C., and Spalart, P. R.: An Advanced Actuator Line Method for Wind Energy Applications and Beyond, 35th Wind Energy Symposium, 9–13 January 2017, Grapevine, Texas, 1998, https://doi.org/10.2514/6.2017-1998, 2017. a
Dag, K. O. and Sørensen, J. N.: A New Tip Correction for Actuator Line Computations, Wind Energy, 23, 148–160, https://doi.org/10.1002/we.2419, 2020. a
Degroote, J.: Partitioned Simulation of Fluid-Structure Interaction, Archives of Computational Methods in Engineering, 20, 185–238, https://doi.org/10.1007/s11831-013-9085-5, 2013. a
Della Posta, G., Leonardi, S., and Bernardini, M.: A Two-Way Coupling Method for the Study of Aeroelastic Effects in Large Wind Turbines, Renew. Energ., 190, 971–992, https://doi.org/10.1016/j.renene.2022.03.158, 2022. a
Della Posta, G., Leonardi, S., and Bernardini, M.: Large Eddy Simulations of a Utility-Scale Horizontal Axis Wind Turbine Including Unsteady Aerodynamics and Fluid-Structure Interaction Modelling, Wind Energy, 26, 98–125, https://doi.org/10.1002/we.2789, 2023. a
Dose, B., Rahimi, H., Herráez, I., Stoevesandt, B., and Peinke, J.: Fluid-Structure Coupled Computations of the NREL5MW Wind Turbine by Means of CFD, Renew. Energ., 129, 591–605, https://doi.org/10.1016/j.renene.2018.05.064, 2018. a
Duponcheel, M., Bricteux, L., Manconi, M., Winckelmans, G., and Bartosiewicz, Y.: Assessment of RANS and Improved Near-Wall Modeling for Forced Convection at Low Prandtl Numbers Based on LES up to Reτ = 2000, Int. J. Heat Mass Tran., 75, 470–482, https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.080, 2014. a
Fingersh, L., Hand, M., and Laxson, A.: Wind Turbine Design Cost and Scaling Model, Tech. rep., National Renewable Energy Lab. (NREL), Golden, CO, USA, https://doi.org//10.2172/897434, 2006. a
Fritz, E. K., Ferreira, C., and Boorsma, K.: An Efficient Blade Sweep Correction Model for Blade Element Momentum Theory, Wind Energy, 25, 1977–1994, https://doi.org/10.1002/we.2778, 2022. a, b
Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G. E., Abbas, N. J., Meng, F., Bortolotti, P., Skrzypinski, W., Scott, G., Feil, R., Bredmose, H., Dykes, K., Shields, M., Allen, C., and Viselli, A.: IEA Wind TCP Task 37: Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine, Tech. rep., National Renewable Energy Lab (NREL), Golden, CO, USA, https://doi.org/10.2172/1603478, 2020. a, b, c
Grinderslev, C., Sørensen, N. N., Horcas, S. G., Troldborg, N., and Zahle, F.: Wind turbines in atmospheric flow: fluid–structure interaction simulations with hybrid turbulence modeling, Wind Energ. Sci., 6, 627–643, https://doi.org/10.5194/wes-6-627-2021, 2021. a
Hansen, M. H.: Aeroelastic Instability Problems for Wind Turbines, Wind Energy, 10, 551–577, https://doi.org/10.1002/we.242, 2007. a
Hodgson, E. L., Andersen, S. J., Troldborg, N., Forsting, A. M., Mikkelsen, R. F., and Sørensen, J. N.: A Quantitative Comparison of Aeroelastic Computations Using Flex5 and Actuator Methods in Les, J. Phys. Conf. Ser., 1934, 012014, https://doi.org/10.1088/1742-6596/1934/1/012014, 2021. a, b
Hodgson, E. L., Grinderslev, C., Forsting, A. R. M., Troldborg, N., Sørensen, N. N., Sørensen, J. N., and Andersen, S. J.: Validation of Aeroelastic Actuator Line for Wind Turbine Modelling in Complex Flows, Frontiers in Energy Research, 10, 864645, https://doi.org/10.3389/fenrg.2022.864645, 2022. a
Höning, L., Lukassen, L. J., Stoevesandt, B., and Herráez, I.: Influence of rotor blade flexibility on the near-wake behavior of the NREL 5 MW wind turbine, Wind Energ. Sci., 9, 203–218, https://doi.org/10.5194/wes-9-203-2024, 2024. a
Jha, P. K. and Schmitz, S.: Actuator Curve Embedding – an Advanced Actuator Line Model, J. Fluid Mech., 834, R2, https://doi.org/10.1017/jfm.2017.793, 2018. a, b
Jonkman, J.: The New Modularization Framework for the FAST Wind Turbine CAE Tool, in: 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 202, https://doi.org/10.2514/6.2013-202, 2013. a
Jonkman, J. M., Hayman, G. J., Jonkman, B. J., Damiani, R. R., and Murray, R. E.: AeroDyn V15 User's Guide and Theory Manual, NREL Draft Report, 46 pp., https://www.nrel.gov/wind/nwtc/assets/pdfs/aerodyn-manual.pdf (last access: 16 August 2024), 2015. a
Kleine, V. G., Hanifi, A., and Henningson, D. S.: Non-Iterative Vortex-Based Smearing Correction for the Actuator Line Method, J. Fluid Mech., 961, A29, https://doi.org/10.1017/jfm.2023.237, 2023. a
Krüger, S., Steinfeld, G., Kraft, M., and Lukassen, L. J.: Validation of a coupled atmospheric–aeroelastic model system for wind turbine power and load calculations, Wind Energ. Sci., 7, 323–344, https://doi.org/10.5194/wes-7-323-2022, 2022. a, b
Li, A., Gaunaa, M., Pirrung, G. R., and Horcas, S. G.: A computationally efficient engineering aerodynamic model for non-planar wind turbine rotors, Wind Energ. Sci., 7, 75–104, https://doi.org/10.5194/wes-7-75-2022, 2022. a, b
Madsen, H. A., Riziotis, V., Zahle, F., Hansen, M. O. L., Snel, H., Grasso, F., Larsen, T. J., Politis, E., and Rasmussen, F.: Blade Element Momentum Modeling of Inflow with Shear in Comparison with Advanced Model Results, Wind Energy, 15, 63–81, https://doi.org/10.1002/we.493, 2012. a
Mann, J.: Wind Field Simulation, Probabilistic Eng. Mech., 13, 269–282, https://doi.org/10.1016/S0266-8920(97)00036-2, 1998. a, b
Manolas, D. I., Riziotis, V. A., and Voutsinas, S. G.: Assessing the Importance of Geometric Nonlinear Effects in the Prediction of Wind Turbine Blade Loads, J. Comput. Nonlin. Dyn., 10, 041008, https://doi.org/10.1115/1.4027684, 2015. a
Martínez-Tossas, L. A. and Meneveau, C.: Filtered Lifting Line Theory and Application to the Actuator Line Model, J. Fluid Mech., 863, 269–292, https://doi.org/10.1017/jfm.2018.994, 2019. a
Meneveau, C. and Lund, T. S.: The Dynamic Smagorinsky Model and Scale-Dependent Coefficients in the Viscous Range of Turbulence, Phys. Fluids, 9, 3932–3934, https://doi.org/10.1063/1.869493, 1997. a
Meng, H., Lien, F.-S., and Li, L.: Elastic Actuator Line Modelling for Wake-Induced Fatigue Analysis of Horizontal Axis Wind Turbine Blade, Renew. Energ., 116, 423–437, https://doi.org/10.1016/j.renene.2017.08.074, 2018. a
Meng, H., Li, L., and Zhang, J.: A Preliminary Numerical Study of the Wake Effects on the Fatigue Load for Wind Farm Based on Elastic Actuator Line Model, Renew. Energ., 162, 788–801, https://doi.org/10.1016/j.renene.2020.07.140, 2020. a
Meyer Forsting, A. R., Pirrung, G. R., and Ramos-García, N.: A vortex-based tip/smearing correction for the actuator line, Wind Energ. Sci., 4, 369–383, https://doi.org/10.5194/wes-4-369-2019, 2019. a
Mikkelsen, R. F.: Actuator disk methods applied to wind turbines, PhD thesis, Technical University of Denmark, PhD thesis at Technical University of Denmark, https://orbit.dtu.dk/en/publications/actuator-disc-methods-applied-to-wind-turbines (last access: 16 August 2024), 2004. a
Moens, M.: Large Eddy Simulation of wind farm flows: improved actuator disk model and investigation of wake phenomena, PhD thesis at Université Catholique de Louvain, http://hdl.handle.net/2078.1/207779 (last access: 16 August 2024), 2018. a
Moens, M., Duponcheel, M., Winckelmans, G., and Chatelain, P.: An Actuator Disk Method with Tip-Loss Correction Based on Local Effective Upstream Velocities, Wind Energy, 21, 766–782, https://doi.org/10.1002/we.2192, 2018. a
Moriarty, P. J. and Hansen, A. C.: AeroDyn Theory Manual, Tech. rep., National Renewable Energy Lab, Golden, CO, USA, https://doi.org/10.2172/15014831, 2005. a
Panteli, A. N., Manolas, D. I., Riziotis, V. A., and Spiliopoulos, K. V.: Comparative Study of Two Geometrically Non-Linear Beam Approaches for the Coupled Wind Turbine System, J. Wind Eng. Ind. Aerod., 231, 105231, https://doi.org/10.1016/j.jweia.2022.105231, 2022. a
Perez-Becker, S., Papi, F., Saverin, J., Marten, D., Bianchini, A., and Paschereit, C. O.: Is the Blade Element Momentum theory overestimating wind turbine loads? – An aeroelastic comparison between OpenFAST's AeroDyn and QBlade's Lifting-Line Free Vortex Wake method, Wind Energ. Sci., 5, 721–743, https://doi.org/10.5194/wes-5-721-2020, 2020. a
Santo, G., Peeters, M., Van Paepegem, W., and Degroote, J.: Dynamic Load and Stress Analysis of a Large Horizontal Axis Wind Turbine Using Full Scale Fluid-Structure Interaction Simulation, Renew. Energ., 140, 212–226, https://doi.org/10.1016/j.renene.2019.03.053, 2019. a, b
Sayed, M., Lutz, Th., Krämer, E., Shayegan, Sh., and Wüchner, R.: Aeroelastic Analysis of 10 MW Wind Turbine Using CFD–CSD Explicit FSI-coupling Approach, J. Fluid. Struct., 87, 354–377, https://doi.org/10.1016/j.jfluidstructs.2019.03.023, 2019. a
Shaler, K., Branlard, E., and Platt, A.: OLAF User's Guide and Theory Manual, Tech. rep., National Renewable Energy Lab (NREL), Golden, CO, USA, https://doi.org/10.2172/15014831, 2020. a, b
Shaler, K., Anderson, B., Martínez-Tossas, L. A., Branlard, E., and Johnson, N.: Comparison of free vortex wake and blade element momentum results against large-eddy simulation results for highly flexible turbines under challenging inflow conditions, Wind Energ. Sci., 8, 383–399, https://doi.org/10.5194/wes-8-383-2023, 2023. a
Sieros, G., Chaviaropoulos, P., Sørensen, J. D., Bulder, B. H., and Jamieson, P.: Upscaling Wind Turbines: Theoretical and Practical Aspects and Their Impact on the Cost of Energy, Wind Energy, 15, 3–17, https://doi.org/10.1002/we.527, 2012. a
Smagorinsky, J.: General Circulation Experiments with the Primitive Equations. I. The Basic Experiment, Mon. Weather Rev., 91, 99–164, 1963. a
Sørensen, J. N. and Larsen, G. C.: A Minimalistic Prediction Model to Determine Energy Production and Costs of Offshore Wind Farms, Energies, 14, 448, https://doi.org/10.3390/en14020448, 2021. a
Sørensen, J. N. and Larsen, G. C.: Assessment of Energy Production and Costs Associated with a Massive Exploitation of Wind Power in the North Sea, J. Phys. Conf. Ser., 2505, 012013, https://doi.org/10.1088/1742-6596/2505/1/012013, 2023. a
Sorensen, J. N. and Shen, W. Z.: Numerical Modeling of Wind Turbine Wakes, J. Fluid. Eng., 124, 393–399, https://doi.org/10.1115/1.1471361, 2002. a
Sørensen, J. N., Mikkelsen, R. F., Henningson, D. S., Ivanell, S., Sarmast, S., and Andersen, S. J.: Simulation of Wind Turbine Wakes Using the Actuator Line Technique, Philos. T. R. Soc. A, 373, 20140071, https://doi.org/10.1098/rsta.2014.0071, 2015. a
Sprague, M. A., Ananthan, S., Vijayakumar, G., and Robinson, M.: ExaWind: A Multifidelity Modeling and Simulation Environment for Wind Energy, J. Phys. Conf. Ser., 1452, 012071, https://doi.org/10.1088/1742-6596/1452/1/012071, 2020. a
Sprague, M. A. and Geers, T. L.: Legendre Spectral Finite Elements for Structural Dynamics Analysis, Commun. Numer. Meth. En., 24, 1953–1965, https://doi.org/10.1002/cnm.1086, 2008. a
Spyropoulos, N., Papadakis, G., Prospathopoulos, J. M., and Riziotis, V. A.: Investigating the Level of Fidelity of an Actuator Line Model in Predicting Loads and Deflections of Rotating Blades under Uniform Free-Stream Flow, Appl. Sci.-Basel, 11, 12097, https://doi.org/10.3390/app112412097, 2021. a
Stanislawski, B. J., Thedin, R., Sharma, A., Branlard, E., Vijayakumar, G., and Sprague, M. A.: Effect of the Integral Length Scales of Turbulent Inflows on Wind Turbine Loads, Renew. Energ., 217, 119218, https://doi.org/10.1016/j.renene.2023.119218, 2023. a
Storey, R. C., Norris, S. E., Stol, K. A., and Cater, J. E.: Large Eddy Simulation of Dynamically Controlled Wind Turbines in an Offshore Environment, Wind Energy, 16, 845–864, https://doi.org/10.1002/we.1525, 2013. a
Thiry, O.: Investigation of wall shear stress models for large eddy simulation, PhD thesis at Université Catholique de Louvain, http://hdl.handle.net/2078.1/184590 (last access: 16 August 2024), 2017. a
Trigaux, F., Chatelain, P., and Winckelmans, G.: A Flexible Actuator Curve Model for Aeroelastic Simulations of Wind Turbines in Atmospheric Boundary Layers, J. Phys. Conf. Ser., 2265, 022050, https://doi.org/10.1088/1742-6596/2265/2/022050, 2022. a, b
Troldborg, N.: Actuator line modelling of wind turbine wakes, PhD thesis at Technical University of Denmark, https://orbit.dtu.dk/en/publications/actuator-line-modeling-of-wind-turbine-wakes (last access: 16 August 2024), 2008. a
Vitsas, A. and Meyers, J.: Multiscale Aeroelastic Simulations of Large Wind Farms in the Atmospheric Boundary Layer, J. Phys. Conf. Ser., 753, 082020, https://doi.org/10.1088/1742-6596/753/8/082020, 2016. a
Wang, Q., Sprague, M. A., Jonkman, J., Johnson, N., and Jonkman, B.: BeamDyn: A High-Fidelity Wind Turbine Blade Solver in the FAST Modular Framework, Wind Energy, 20, 1439–1462, https://doi.org/10.1002/we.2101, 2017. a
Welch, P.: The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms, IEEE T. Acoust. Speech, 15, 70–73, https://doi.org/10.1109/TAU.1967.1161901, 1967. a
Short summary
In this research, the impact of blade flexibility is investigated for a very large wind turbine using numerical simulations. It is shown that bending and torsion decrease the power production and affect aerodynamic loads. Blade deformation also affects the flow of wind behind the turbine, resulting in a higher mean velocity. Our study highlights the importance of including blade flexibility in the simulation of large wind turbines to obtain accurate power and load predictions.
In this research, the impact of blade flexibility is investigated for a very large wind turbine...
Altmetrics
Final-revised paper
Preprint