Articles | Volume 4, issue 4
https://doi.org/10.5194/wes-4-663-2019
https://doi.org/10.5194/wes-4-663-2019
Research article
 | 
16 Dec 2019
Research article |  | 16 Dec 2019

Massive simplification of the wind farm layout optimization problem

Andrew P. J. Stanley and Andrew Ning

Related authors

Fast yaw optimization for wind plant wake steering using Boolean yaw angles
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci., 7, 741–757, https://doi.org/10.5194/wes-7-741-2022,https://doi.org/10.5194/wes-7-741-2022, 2022
Short summary
Gradient-Based Wind Farm Layout Optimization Results Compared with Large-Eddy Simulations
Jared J. Thomas, Christopher J. Bay, Andrew P. J. Stanley, and Andrew Ning
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-4,https://doi.org/10.5194/wes-2022-4, 2022
Revised manuscript not accepted
Short summary
A model to calculate fatigue damage caused by partial waking during wind farm optimization
Andrew P. J. Stanley, Jennifer King, Christopher Bay, and Andrew Ning
Wind Energ. Sci., 7, 433–454, https://doi.org/10.5194/wes-7-433-2022,https://doi.org/10.5194/wes-7-433-2022, 2022
Short summary
Objective and algorithm considerations when optimizing the number and placement of turbines in a wind power plant
Andrew P. J. Stanley, Owen Roberts, Jennifer King, and Christopher J. Bay
Wind Energ. Sci., 6, 1143–1167, https://doi.org/10.5194/wes-6-1143-2021,https://doi.org/10.5194/wes-6-1143-2021, 2021
Short summary
Polynomial chaos to efficiently compute the annual energy production in wind farm layout optimization
Andrés Santiago Padrón, Jared Thomas, Andrew P. J. Stanley, Juan J. Alonso, and Andrew Ning
Wind Energ. Sci., 4, 211–231, https://doi.org/10.5194/wes-4-211-2019,https://doi.org/10.5194/wes-4-211-2019, 2019
Short summary

Related subject area

Design methods, reliability and uncertainty modelling
Effectively using multifidelity optimization for wind turbine design
John Jasa, Pietro Bortolotti, Daniel Zalkind, and Garrett Barter
Wind Energ. Sci., 7, 991–1006, https://doi.org/10.5194/wes-7-991-2022,https://doi.org/10.5194/wes-7-991-2022, 2022
Short summary
Efficient Bayesian calibration of aerodynamic wind turbine models using surrogate modeling
Benjamin Sanderse, Vinit V. Dighe, Koen Boorsma, and Gerard Schepers
Wind Energ. Sci., 7, 759–781, https://doi.org/10.5194/wes-7-759-2022,https://doi.org/10.5194/wes-7-759-2022, 2022
Short summary
Fast yaw optimization for wind plant wake steering using Boolean yaw angles
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci., 7, 741–757, https://doi.org/10.5194/wes-7-741-2022,https://doi.org/10.5194/wes-7-741-2022, 2022
Short summary
A simplified, efficient approach to hybrid wind and solar plant site optimization
Charles Tripp, Darice Guittet, Jennifer King, and Aaron Barker
Wind Energ. Sci., 7, 697–713, https://doi.org/10.5194/wes-7-697-2022,https://doi.org/10.5194/wes-7-697-2022, 2022
Short summary
Influence of wind turbine design parameters on linearized physics-based models in OpenFAST
Jason M. Jonkman, Emmanuel S. P. Branlard, and John P. Jasa
Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022,https://doi.org/10.5194/wes-7-559-2022, 2022
Short summary

Cited articles

Barthelmie, R. J., Frandsen, S. T., Nielsen, M., Pryor, S., Rethore, P.-E., and Jørgensen, H. E.: Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm, Wind Energy, 10, 517–528, 2007. a
Barthelmie, R. J., Hansen, K., Frandsen, S. T., Rathmann, O., Schepers, J., Schlez, W., Phillips, J., Rados, K., Zervos, A., Politis, E. S., and Chaviaropoulos, P. K.: Modelling and measuring flow and wind turbine wakes in large wind farms offshore, Wind Energy, 12, 431–444, 2009. a
Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, J. Fluid Mech., 806, 506–541, 2016. a, b
Bortolotti, P., Tarres, H. C., Dykes, K. L., Merz, K., Sethuraman, L., Verelst, D., and Zahle, F.: IEA Wind TCP Task 37: Systems Engineering in Wind Energy – WP2.1 Reference Wind Turbines, Technical report, https://doi.org/10.2172/1529216, 2019. a
Briggs, K.: Navigating the complexities of wake losses, North American Windpower, 10, available at: https://www.nawindpower.com/online/issues/NAW1304/FEAT_07_Navigating_The.html (last access: 9 December 2019), 2013. a
Download
Short summary
When designing a wind farm, one crucial step is finding the correct location or optimizing the location of the wind turbines to maximize power production. In the past, optimizing the turbine layout of large wind farms has been difficult because of the large number of interacting variables. In this paper, we present the boundary-grid parameterization method, which defines the layout of any wind farm with only five variables, allowing people to study and design wind farms regardless of the size.
Altmetrics
Final-revised paper
Preprint