Articles | Volume 5, issue 3
Wind Energ. Sci., 5, 1059–1073, 2020
https://doi.org/10.5194/wes-5-1059-2020

Special issue: Flow in complex terrain: the Perdigão campaigns (WES/ACP/AMT...

Wind Energ. Sci., 5, 1059–1073, 2020
https://doi.org/10.5194/wes-5-1059-2020
Research article
24 Aug 2020
Research article | 24 Aug 2020

Multi-lidar wind resource mapping in complex terrain

Robert Menke et al.

Related authors

Analysis of flow in complex terrain using multi-Doppler lidar retrievals
Tyler M. Bell, Petra Klein, Norman Wildmann, and Robert Menke
Atmos. Meas. Tech., 13, 1357–1371, https://doi.org/10.5194/amt-13-1357-2020,https://doi.org/10.5194/amt-13-1357-2020, 2020
Short summary
Characterization of flow recirculation zones at the Perdigão site using multi-lidar measurements
Robert Menke, Nikola Vasiljević, Jakob Mann, and Julie K. Lundquist
Atmos. Chem. Phys., 19, 2713–2723, https://doi.org/10.5194/acp-19-2713-2019,https://doi.org/10.5194/acp-19-2713-2019, 2019
Short summary
Does the wind turbine wake follow the topography? A multi-lidar study in complex terrain
Robert Menke, Nikola Vasiljević, Kurt S. Hansen, Andrea N. Hahmann, and Jakob Mann
Wind Energ. Sci., 3, 681–691, https://doi.org/10.5194/wes-3-681-2018,https://doi.org/10.5194/wes-3-681-2018, 2018
Short summary
Perdigão 2015: methodology for atmospheric multi-Doppler lidar experiments
Nikola Vasiljević, José M. L. M. Palma, Nikolas Angelou, José Carlos Matos, Robert Menke, Guillaume Lea, Jakob Mann, Michael Courtney, Luis Frölen Ribeiro, and Vitor M. M. G. C. Gomes
Atmos. Meas. Tech., 10, 3463–3483, https://doi.org/10.5194/amt-10-3463-2017,https://doi.org/10.5194/amt-10-3463-2017, 2017
Short summary

Related subject area

Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022,https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022,https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Large-eddy simulation of airborne wind energy farms
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022,https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022,https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary

Cited articles

Bechmann, A., Sørensen, N. N., Berg, J., Mann, J., and Réthoré, P.-E.: The Bolund Experiment, Part II: Blind Comparison of Microscale Flow Models, Bound.-Lay. Meteorol., 141, 245, https://doi.org/10.1007/s10546-011-9637-x, 2011. a
Beck, H. and Kühn, M.: Dynamic Data Filtering of Long-Range Doppler LiDAR Wind Speed Measurements, Remote Sens.-Basel, 9, 561, https://doi.org/10.3390/rs9060561, 2017. a
Berg, J., Troldborg, N., Menke, R., Patton, E. G., Sullivan, P. P., Mann, J., and Sørensen, N.: Flow in complex terrain – a Large Eddy Simulation comparison study, J. Phys. Conf. Ser., 1037, 072015, https://doi.org/10.1088/1742-6596/1037/7/072015, 2018. a
Bingöl, F., Mann, J., and Foussekis, D.: Conically scanning lidar error in complex terrain, Meteorol. Z., 18, 189–195, https://doi.org/10.1127/0941-2948/2009/0368, 2009. a
Bodini, N., Zardi, D., and Lundquist, J. K.: Three-dimensional structure of wind turbine wakes as measured by scanning lidar, Atmos. Meas. Tech., 10, 2881–2896, https://doi.org/10.5194/amt-10-2881-2017, 2017. a
Download
Short summary
The estimation of wind resources in complex terrain is challenging as the wind conditions change significantly over short distances, different to flat terrain, where spatial changes are small. We demonstrate in this work that wind lidars can remotely map wind resources over large areas. This will have implications for the planning of wind energy projects and ultimately reduce uncertainties in wind resource estimations in complex terrain, making such areas more interesting for future development.