Articles | Volume 5, issue 3
Wind Energ. Sci., 5, 1211–1223, 2020
https://doi.org/10.5194/wes-5-1211-2020
Wind Energ. Sci., 5, 1211–1223, 2020
https://doi.org/10.5194/wes-5-1211-2020
Research article
23 Sep 2020
Research article | 23 Sep 2020

Multipoint reconstruction of wind speeds

Christian Behnken et al.

Related authors

Application of the Townsend–George theory for free shear flows to single and double wind turbine wakes – a wind tunnel study
Ingrid Neunaber, Joachim Peinke, and Martin Obligado
Wind Energ. Sci., 7, 201–219, https://doi.org/10.5194/wes-7-201-2022,https://doi.org/10.5194/wes-7-201-2022, 2022
Short summary
Pressure-based lift estimation and its application to feedforward load control employing trailing-edge flaps
Sirko Bartholomay, Tom T. B. Wester, Sebastian Perez-Becker, Simon Konze, Christian Menzel, Michael Hölling, Axel Spickenheuer, Joachim Peinke, Christian N. Nayeri, Christian Oliver Paschereit, and Kilian Oberleithner
Wind Energ. Sci., 6, 221–245, https://doi.org/10.5194/wes-6-221-2021,https://doi.org/10.5194/wes-6-221-2021, 2021
Short summary
Numerical Investigation of Aerodynamic Performance of Wind Turbine Airfoils with Ice Accretion
Khaled Yassin, Hassan Kassem, Bernhard Stoevesandt, Thomas Klemme, and Joachim Peinke
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-3,https://doi.org/10.5194/wes-2021-3, 2021
Revised manuscript not accepted
Short summary
Blind test comparison on the wake behind a yawed wind turbine
Franz Mühle, Jannik Schottler, Jan Bartl, Romain Futrzynski, Steve Evans, Luca Bernini, Paolo Schito, Martín Draper, Andrés Guggeri, Elektra Kleusberg, Dan S. Henningson, Michael Hölling, Joachim Peinke, Muyiwa S. Adaramola, and Lars Sætran
Wind Energ. Sci., 3, 883–903, https://doi.org/10.5194/wes-3-883-2018,https://doi.org/10.5194/wes-3-883-2018, 2018
Remote surface damage detection on rotor blades of operating wind turbines by means of infrared thermography
Dominik Traphan, Iván Herráez, Peter Meinlschmidt, Friedrich Schlüter, Joachim Peinke, and Gerd Gülker
Wind Energ. Sci., 3, 639–650, https://doi.org/10.5194/wes-3-639-2018,https://doi.org/10.5194/wes-3-639-2018, 2018
Short summary

Related subject area

Wind and turbulence
Wake properties and power output of very large wind farms for different meteorological conditions and turbine spacings: a large-eddy simulation case study for the German Bight
Oliver Maas and Siegfried Raasch
Wind Energ. Sci., 7, 715–739, https://doi.org/10.5194/wes-7-715-2022,https://doi.org/10.5194/wes-7-715-2022, 2022
Short summary
Validation of wind resource and energy production simulations for small wind turbines in the United States
Lindsay M. Sheridan, Caleb Phillips, Alice C. Orrell, Larry K. Berg, Heidi Tinnesand, Raj K. Rai, Sagi Zisman, Dmitry Duplyakin, and Julia E. Flaherty
Wind Energ. Sci., 7, 659–676, https://doi.org/10.5194/wes-7-659-2022,https://doi.org/10.5194/wes-7-659-2022, 2022
Short summary
Four-dimensional wind field generation for the aeroelastic simulation of wind turbines with lidars
Yiyin Chen, Feng Guo, David Schlipf, and Po Wen Cheng
Wind Energ. Sci., 7, 539–558, https://doi.org/10.5194/wes-7-539-2022,https://doi.org/10.5194/wes-7-539-2022, 2022
Short summary
Can reanalysis products outperform mesoscale numerical weather prediction models in modeling the wind resource in simple terrain?
Vincent Pronk, Nicola Bodini, Mike Optis, Julie K. Lundquist, Patrick Moriarty, Caroline Draxl, Avi Purkayastha, and Ethan Young
Wind Energ. Sci., 7, 487–504, https://doi.org/10.5194/wes-7-487-2022,https://doi.org/10.5194/wes-7-487-2022, 2022
Short summary
The five main influencing factors for lidar errors in complex terrain
Tobias Klaas-Witt and Stefan Emeis
Wind Energ. Sci., 7, 413–431, https://doi.org/10.5194/wes-7-413-2022,https://doi.org/10.5194/wes-7-413-2022, 2022
Short summary

Cited articles

IEC: IEC 61400-1 Wind turbines Part 1: Design requirements, 2005. a
Ali, N., Fuchs, A., Neunaber, I., Peinke, J., and Cal, R. B.: Multi-scale/fractal processes in the wake of a wind turbine array boundary layer, J. Turbul., 20, 93–120, https://doi.org/10.1080/14685248.2019.1590584, 2019. a
Anvari, M., Lohmann, G., Wächter, M., Milan, P., Lorenz, E., Heinemann, D., Tabar, M. R. R., and Peinke, J.: Short term fluctuations of wind and solar power systems, New J. Phys., 18, 063027, https://doi.org/10.1088/1367-2630/18/6/063027, 2016. a
Boettcher, F., Renner, C., Waldl, H.-P., and Peinke, J.: On the statistics of wind gusts, Bound.-Lay. Meteorol., 108, 163–173, https://doi.org/10.1023/A:1023009722736, 2003. a, b
Brokish, K. and Kirtley, J. L.: Pitfalls of modeling wind power using Markov chains, in: 2009 IEEE/PES Power Systems Conference and 320 Exposition, 1–6, https://doi.org/10.1109/PSCE.2009.4840265, 2009. a, b
Download
Short summary
We extend the common characterisation and modelling of wind time series with respect to higher-order statistics. We present an approach which enables us to obtain the general multipoint statistics of wind time series measured. This work is an important step in a more comprehensive description of wind also including extreme events. Important is that we show how stochastic equations can be derived from measured wind data which can be used to model long time series.