Articles | Volume 6, issue 5
https://doi.org/10.5194/wes-6-1205-2021
https://doi.org/10.5194/wes-6-1205-2021
Research article
 | 
16 Sep 2021
Research article |  | 16 Sep 2021

The smoother the better? A comparison of six post-processing methods to improve short-term offshore wind power forecasts in the Baltic Sea

Christoffer Hallgren, Stefan Ivanell, Heiner Körnich, Ville Vakkari, and Erik Sahlée

Related authors

Machine learning methods to improve spatial predictions of coastal wind speed profiles and low-level jets using single-level ERA5 data
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Ville Vakkari, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 9, 821–840, https://doi.org/10.5194/wes-9-821-2024,https://doi.org/10.5194/wes-9-821-2024, 2024
Short summary
Brief communication: On the definition of the low-level jet
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 8, 1651–1658, https://doi.org/10.5194/wes-8-1651-2023,https://doi.org/10.5194/wes-8-1651-2023, 2023
Short summary
The winds are twisting: analysis of strong directional shear across the rotor plane using coastal lidar measurements and ERA5
Christoffer Hallgren, Heiner Körnich, Stefan Ivanell, Ville Vakkari, and Erik Sahlée
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-129,https://doi.org/10.5194/wes-2023-129, 2023
Preprint withdrawn
Short summary
Classification and properties of non-idealized coastal wind profiles – an observational study
Christoffer Hallgren, Johan Arnqvist, Erik Nilsson, Stefan Ivanell, Metodija Shapkalijevski, August Thomasson, Heidi Pettersson, and Erik Sahlée
Wind Energ. Sci., 7, 1183–1207, https://doi.org/10.5194/wes-7-1183-2022,https://doi.org/10.5194/wes-7-1183-2022, 2022
Short summary

Cited articles

Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W., Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., Ivarsson, K.-I., Lenderink, G., Niemelä, S., Pagh Nielsen, K., Onvlee, J., Rontu, L., Samuelsson, P., Santos Muñoz, D., Subias, A., Tijm, S., Toll, V., Yang, X., and Ødegaard Køltzow, M.: The HARMONIE–AROME model configuration in the ALADIN–HIRLAM NWP system, Mon. Weather Rev., 145, 1919–1935, https://doi.org/10.1175/MWR-D-16-0417.1, 2017. a, b
Bishop, I. D. and Miller, D. R.: Visual assessment of off-shore wind turbines: The influence of distance, contrast, movement and social variables, Renew. Energ., 32, 814–831, https://doi.org/10.1016/j.renene.2006.03.009, 2007. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a
Brodlie, K. and Butt, S.: Preserving convexity using piecewise cubic interpolation, Comput. Graph., 15, 15–23, https://doi.org/10.1016/0097-8493(91)90026-e, 1991. a
Butler, J. N.: Assessment of complex wind turbine wake flow using scanning wind lidar measurements and numerical analysis techniques, PhD thesis, University of Strathclyde, Glasgow, 2014. a
Download
Short summary
As wind power becomes more popular, there is a growing demand for accurate power production forecasts. In this paper we investigated different methods to improve wind power forecasts for an offshore location in the Baltic Sea, using both simple and more advanced techniques. The performance of the methods is evaluated for different weather conditions. Smoothing the forecast was found to be the best method in general, but we recommend selecting which method to use based on the forecasted weather.
Share
Altmetrics
Final-revised paper
Preprint