Articles | Volume 6, issue 2
Wind Energ. Sci., 6, 427–440, 2021
https://doi.org/10.5194/wes-6-427-2021

Special issue: Wind Energy Science Conference 2019

Wind Energ. Sci., 6, 427–440, 2021
https://doi.org/10.5194/wes-6-427-2021
Research article
18 Mar 2021
Research article | 18 Mar 2021

Method for airborne measurement of the spatial wind speed distribution above complex terrain

Christian Ingenhorst et al.

Related authors

Wind turbine drivetrains: state-of-the-art technologies and future development trends
Amir R. Nejad, Jonathan Keller, Yi Guo, Shawn Sheng, Henk Polinder, Simon Watson, Jianning Dong, Zian Qin, Amir Ebrahimi, Ralf Schelenz, Francisco Gutiérrez Guzmán, Daniel Cornel, Reza Golafshan, Georg Jacobs, Bart Blockmans, Jelle Bosmans, Bert Pluymers, James Carroll, Sofia Koukoura, Edward Hart, Alasdair McDonald, Anand Natarajan, Jone Torsvik, Farid K. Moghadam, Pieter-Jan Daems, Timothy Verstraeten, Cédric Peeters, and Jan Helsen
Wind Energ. Sci., 7, 387–411, https://doi.org/10.5194/wes-7-387-2022,https://doi.org/10.5194/wes-7-387-2022, 2022
Short summary
Reducing cost uncertainty in the drivetrain design decision with a focus on the operational phase
Freia Harzendorf, Ralf Schelenz, and Georg Jacobs
Wind Energ. Sci., 6, 571–584, https://doi.org/10.5194/wes-6-571-2021,https://doi.org/10.5194/wes-6-571-2021, 2021
Short summary
Condition monitoring of roller bearings using acoustic emission
Daniel Cornel, Francisco Gutiérrez Guzmán, Georg Jacobs, and Stephan Neumann
Wind Energ. Sci., 6, 367–376, https://doi.org/10.5194/wes-6-367-2021,https://doi.org/10.5194/wes-6-367-2021, 2021
Short summary
Future economic perspective and potential revenue of non-subsidized wind turbines in Germany
Lucas Blickwedel, Freia Harzendorf, Ralf Schelenz, and Georg Jacobs
Wind Energ. Sci., 6, 177–190, https://doi.org/10.5194/wes-6-177-2021,https://doi.org/10.5194/wes-6-177-2021, 2021
Short summary
Aeroelastic response of a multi-megawatt upwind horizontal axis wind turbine (HAWT) based on fluid–structure interaction simulation
Yasir Shkara, Martin Cardaun, Ralf Schelenz, and Georg Jacobs
Wind Energ. Sci., 5, 141–154, https://doi.org/10.5194/wes-5-141-2020,https://doi.org/10.5194/wes-5-141-2020, 2020
Short summary

Related subject area

Wind and turbulence
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary
Development of an automatic thresholding method for wake meandering studies and its application to the data set from scanning wind lidar
Maria Krutova, Mostafa Bakhoday-Paskyabi, Joachim Reuder, and Finn Gunnar Nielsen
Wind Energ. Sci., 7, 849–873, https://doi.org/10.5194/wes-7-849-2022,https://doi.org/10.5194/wes-7-849-2022, 2022
Short summary
Turbulence statistics from three different nacelle lidars
Wei Fu, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 7, 831–848, https://doi.org/10.5194/wes-7-831-2022,https://doi.org/10.5194/wes-7-831-2022, 2022
Short summary
RANS modeling of a single wind turbine wake in the unstable surface layer
Mads Baungaard, Maarten Paul van der Laan, and Mark Kelly
Wind Energ. Sci., 7, 783–800, https://doi.org/10.5194/wes-7-783-2022,https://doi.org/10.5194/wes-7-783-2022, 2022
Short summary
Wake properties and power output of very large wind farms for different meteorological conditions and turbine spacings: a large-eddy simulation case study for the German Bight
Oliver Maas and Siegfried Raasch
Wind Energ. Sci., 7, 715–739, https://doi.org/10.5194/wes-7-715-2022,https://doi.org/10.5194/wes-7-715-2022, 2022
Short summary

Cited articles

Abichandani, P., Lobo, D., Ford, G., Bucci, D., and Kam, M.: Wind Measurement and Simulation Techniques in Multi-Rotor Small Unmanned Aerial Vehicles, IEEE Access, 8, 54910–54927, https://doi.org/10.1109/ACCESS.2020.2977693, 2020. 
Ayala, M., Maldonado, J., Paccha, E., and Riba, C.: Wind Power Resource Assessment in Complex Terrain: Villonaco Case-study Using Computational Fluid Dynamics Analysis, Enrgy. Proced., 107, 41–48, https://doi.org/10.1016/j.egypro.2016.12.127, 2017. 
El Bahlouli, A., Rautenberg, A., Schön, M., zum Berge, K., Bange, J., and Knaus, H.: Comparison of CFD Simulation to UAS Measurements for Wind Flows in Complex Terrain: Application to the WINSENT Test Site, Energies, 12, 1992, https://doi.org/10.3390/EN12101992, 2019. 
Fördergesellschaft Windenergie und andere Dezentrale Energien: Technische Richtlinien für Windenergieanlagen: Bestimmung von Windpotenzial und Energieerträgen, FGW e.V., Berlin, 2017. 
Holland, G. J., Webster, P. J., Curry, J. A., Tyrell, G., Gauntlett, D., Brett, G., Becker, J., Hoag, R., and Vaglienti, W.: The Aerosonde Robotic Aircraft: A New Paradigm for Environmental Observations, B. Am. Meteorol. Soc., 82, 889–901, https://doi.org/10.1175/1520-0477(2001)082<0889:TARAAN>2.3.CO;2, 2001. 
Download
Short summary
Wind farm sites in complex terrain are subject to local wind phenomena, which are difficult to quantify but have a huge impact on a wind turbine's annual energy production. Therefore, a wind sensor was applied on an unmanned aerial vehicle and validated against stationary wind sensors with good agreement. A measurement over complex terrain showed local deviations from the mean wind speed of approx. ± 30 %, indicating the importance of an extensive site evaluation to reduce investment risk.