Articles | Volume 7, issue 4
https://doi.org/10.5194/wes-7-1527-2022
https://doi.org/10.5194/wes-7-1527-2022
Brief communication
 | 
20 Jul 2022
Brief communication |  | 20 Jul 2022

Brief communication: How does complex terrain change the power curve of a wind turbine?

Niels Troldborg, Søren J. Andersen, Emily L. Hodgson, and Alexander Meyer Forsting

Related authors

A simple vortex model applied to an idealized rotor in sheared inflow
Mac Gaunaa, Niels Troldborg, and Emmanuel Branlard
Wind Energ. Sci., 8, 503–513, https://doi.org/10.5194/wes-8-503-2023,https://doi.org/10.5194/wes-8-503-2023, 2023
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary
Wind turbines in atmospheric flow: fluid–structure interaction simulations with hybrid turbulence modeling
Christian Grinderslev, Niels Nørmark Sørensen, Sergio González Horcas, Niels Troldborg, and Frederik Zahle
Wind Energ. Sci., 6, 627–643, https://doi.org/10.5194/wes-6-627-2021,https://doi.org/10.5194/wes-6-627-2021, 2021
Short summary
On the self-similarity of wind turbine wakes in a complex terrain using large eddy simulation
Arslan Salim Dar, Jacob Berg, Niels Troldborg, and Edward G. Patton
Wind Energ. Sci., 4, 633–644, https://doi.org/10.5194/wes-4-633-2019,https://doi.org/10.5194/wes-4-633-2019, 2019
Short summary
How does turbulence change approaching a rotor?
Jakob Mann, Alfredo Peña, Niels Troldborg, and Søren J. Andersen
Wind Energ. Sci., 3, 293–300, https://doi.org/10.5194/wes-3-293-2018,https://doi.org/10.5194/wes-3-293-2018, 2018
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Converging profile relationships for offshore wind speed and turbulence intensity
Gus Jeans
Wind Energ. Sci., 9, 2001–2015, https://doi.org/10.5194/wes-9-2001-2024,https://doi.org/10.5194/wes-9-2001-2024, 2024
Short summary
A simple steady-state inflow model of the neutral and stable atmospheric boundary layer applied to wind turbine wake simulations
Maarten Paul van der Laan, Mark Kelly, Mads Baungaard, Antariksh Dicholkar, and Emily Louise Hodgson
Wind Energ. Sci., 9, 1985–2000, https://doi.org/10.5194/wes-9-1985-2024,https://doi.org/10.5194/wes-9-1985-2024, 2024
Short summary
Influences of lidar scanning parameters on wind turbine wake retrievals in complex terrain
Rachel Robey and Julie K. Lundquist
Wind Energ. Sci., 9, 1905–1922, https://doi.org/10.5194/wes-9-1905-2024,https://doi.org/10.5194/wes-9-1905-2024, 2024
Short summary
Experimental evaluation of wind turbine wake turbulence impacts on a general aviation aircraft
Jonathan D. Rogers
Wind Energ. Sci., 9, 1849–1868, https://doi.org/10.5194/wes-9-1849-2024,https://doi.org/10.5194/wes-9-1849-2024, 2024
Short summary
Underestimation of strong wind speeds offshore in ERA5: evidence, discussion and correction
Rémi Gandoin and Jorge Garza
Wind Energ. Sci., 9, 1727–1745, https://doi.org/10.5194/wes-9-1727-2024,https://doi.org/10.5194/wes-9-1727-2024, 2024
Short summary

Cited articles

Allen, J., King, R., and Barter, G.: Wind Farm Simulation and Layout Optimization in Complex Terrain, J. Phys.: Conf. Ser., 1452, 012066, https://doi.org/10.1088/1742-6596/1452/1/012066, 2020. a
Bak, C.: Description of the DTU 10 MW Reference Wind Turbine, Tech. rep., DTU Wind Energy Report-I-0092, Technical University of Denmark, https://rwt.windenergy.dtu.dk/dtu10mw/dtu-10mw-rwt (last access: 18 July 2022), 2013. a
Berg, J., Troldborg, N., Sørensen, N., Patton, E. G., and Sullivan, P. P.: Large-Eddy Simulation of turbine wake in complex terrain, J. Phys.: Conf. Ser., 854, 012003, https://doi.org/10.1088/1742-6596/854/1/012003, 2017. a
Borraccino, A., Wagner, R., Vignaroli, A., and Meyer Forsting, A.: Power performance verification in complex terrain using nacelle lidars: the Hill of Towie (HoT) campaign, no. 158 in DTU Wind Energy E, DTU Wind Energy, Denmark, https://orbit.dtu.dk/en/publications/power-performance-verification-in-complex-terrain-using-nacelle-l (last access: 18 July 2022), 2017. a, b
Brodeur, P. and Masson, C.: Numerical site calibration over complex terrain, J. Solar Energ. Eng., 130, 0310201–03102012, https://doi.org/10.1115/1.2931502, 2008. a
Download
Short summary
This article shows that the power performance of a wind turbine may be very different in flat and complex terrain. This is an important finding because it shows that the power output of a given wind turbine is governed by not only the available wind at the position of the turbine but also how the ambient flow develops in the region behind the turbine.
Altmetrics
Final-revised paper
Preprint