Articles | Volume 7, issue 4
https://doi.org/10.5194/wes-7-1527-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-1527-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Brief communication: How does complex terrain change the power curve of a wind turbine?
DTU Wind and Energy Systems, Frederiksborgvej 399, 4000, Roskilde, Denmark
Søren J. Andersen
DTU Wind and Energy Systems, Frederiksborgvej 399, 4000, Roskilde, Denmark
Emily L. Hodgson
DTU Wind and Energy Systems, Frederiksborgvej 399, 4000, Roskilde, Denmark
Alexander Meyer Forsting
DTU Wind and Energy Systems, Frederiksborgvej 399, 4000, Roskilde, Denmark
Related authors
Clemens Paul Zengler, Niels Troldborg, and Mac Gaunaa
Wind Energ. Sci., 10, 1485–1497, https://doi.org/10.5194/wes-10-1485-2025, https://doi.org/10.5194/wes-10-1485-2025, 2025
Short summary
Short summary
Wind turbine power performance is mostly calculated based on the wind speed measured at the turbine position. The presented results imply that it is necessary to also assess how the undisturbed wind speed changes in the flow direction to accurately predict the power performance. In other words, the acceleration of the flow is relevant for the energy production. An outcome of this work is a simple model that can be used to include flow acceleration in power performance predictions.
Nanako Sasanuma, Akihiro Honda, Christian Bak, Niels Troldborg, Mac Gaunaa, Morten Nielsen, and Teruhisa Shimada
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-130, https://doi.org/10.5194/wes-2025-130, 2025
Preprint under review for WES
Short summary
Short summary
We verify wake effects between two turbines in complex terrain using Supervisory Control and Data Acquisition data. By identifying “wake conditions” and “no-wake conditions” by the blade pitch angle of the upstream wind turbine, we evaluate wake effects on wind speed, turbulent intensity, and power output. Results show that flow downhill has a significant impact on wake effects compared to flow uphill. The method offers a practical alternative to field measurements in complex terrain.
Stefan Ivanell, Warit Chanprasert, Luca Lanzilao, James Bleeg, Johan Meyers, Antoine Mathieu, Søren Juhl Andersen, Rem-Sophia Mouradi, Eric Dupont, Hugo Olivares-Espinosa, and Niels Troldborg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-88, https://doi.org/10.5194/wes-2025-88, 2025
Preprint under review for WES
Short summary
Short summary
This study explores how the height of the atmosphere's boundary layer impacts wind farm performance, focusing on how this factor influences energy output. By simulating different boundary layer heights and conditions, the research reveals that deeper layers promote better energy recovery. The findings highlight the importance of considering atmospheric conditions when simulating wind farms to maximize energy efficiency, offering valuable insights for the wind energy industry.
Mac Gaunaa, Niels Troldborg, and Emmanuel Branlard
Wind Energ. Sci., 8, 503–513, https://doi.org/10.5194/wes-8-503-2023, https://doi.org/10.5194/wes-8-503-2023, 2023
Short summary
Short summary
We present an analytical vortex model. Despite its simplicity, the model is fully consistent with 1D momentum theory. It shows that the flow through a non-uniformly loaded rotor operating in non-uniform inflow behaves locally as predicted by 1D momentum theory. As a consequence, the local power coefficient (based on local inflow) of an ideal rotor is unaltered by the presence of shear. Finally, the model shows that there is no cross-shear deflection of the wake of a rotor in sheared inflow.
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022, https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary
Short summary
The power performance of a wind turbine is often tested with the turbine standing in a row of several wind turbines, as it is assumed that the performance is not affected by the neighbouring turbines. We test this assumption with both simulations and measurements, and we show that the power performance can be either enhanced or lowered by the neighbouring wind turbines. Consequently, we also show how power performance testing might be biased when performed on a row of several wind turbines.
Christian Grinderslev, Niels Nørmark Sørensen, Sergio González Horcas, Niels Troldborg, and Frederik Zahle
Wind Energ. Sci., 6, 627–643, https://doi.org/10.5194/wes-6-627-2021, https://doi.org/10.5194/wes-6-627-2021, 2021
Short summary
Short summary
This study investigates aero-elasticity of wind turbines present in the turbulent and chaotic wind flow of the lower atmosphere, using fluid–structure interaction simulations. This method combines structural response computations with high-fidelity modeling of the turbulent wind flow, using a novel turbulence model which combines the capabilities of large-eddy simulations for atmospheric flows with improved delayed detached eddy simulations for the separated flow near the rotor.
Esperanza Soto Sagredo, Søren Juhl Andersen, Ásta Hannesdóttir, and Jennifer Marie Rinker
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-148, https://doi.org/10.5194/wes-2025-148, 2025
Preprint under review for WES
Short summary
Short summary
We developed and tested three methods to estimate wind speed variations across the entire rotor area of a wind turbine using lidar data. Unlike traditional approaches that focus on average wind speed, our methods capture detailed inflow structures. This allows the turbine to anticipate changes, improving control and reducing wear – provided the estimation settings are properly selected.
Clemens Paul Zengler, Niels Troldborg, and Mac Gaunaa
Wind Energ. Sci., 10, 1485–1497, https://doi.org/10.5194/wes-10-1485-2025, https://doi.org/10.5194/wes-10-1485-2025, 2025
Short summary
Short summary
Wind turbine power performance is mostly calculated based on the wind speed measured at the turbine position. The presented results imply that it is necessary to also assess how the undisturbed wind speed changes in the flow direction to accurately predict the power performance. In other words, the acceleration of the flow is relevant for the energy production. An outcome of this work is a simple model that can be used to include flow acceleration in power performance predictions.
Nanako Sasanuma, Akihiro Honda, Christian Bak, Niels Troldborg, Mac Gaunaa, Morten Nielsen, and Teruhisa Shimada
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-130, https://doi.org/10.5194/wes-2025-130, 2025
Preprint under review for WES
Short summary
Short summary
We verify wake effects between two turbines in complex terrain using Supervisory Control and Data Acquisition data. By identifying “wake conditions” and “no-wake conditions” by the blade pitch angle of the upstream wind turbine, we evaluate wake effects on wind speed, turbulent intensity, and power output. Results show that flow downhill has a significant impact on wake effects compared to flow uphill. The method offers a practical alternative to field measurements in complex terrain.
Stefan Ivanell, Warit Chanprasert, Luca Lanzilao, James Bleeg, Johan Meyers, Antoine Mathieu, Søren Juhl Andersen, Rem-Sophia Mouradi, Eric Dupont, Hugo Olivares-Espinosa, and Niels Troldborg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-88, https://doi.org/10.5194/wes-2025-88, 2025
Preprint under review for WES
Short summary
Short summary
This study explores how the height of the atmosphere's boundary layer impacts wind farm performance, focusing on how this factor influences energy output. By simulating different boundary layer heights and conditions, the research reveals that deeper layers promote better energy recovery. The findings highlight the importance of considering atmospheric conditions when simulating wind farms to maximize energy efficiency, offering valuable insights for the wind energy industry.
Juan Felipe Céspedes Moreno, Juan Pablo Murcia León, and Søren Juhl Andersen
Wind Energ. Sci., 10, 597–611, https://doi.org/10.5194/wes-10-597-2025, https://doi.org/10.5194/wes-10-597-2025, 2025
Short summary
Short summary
Using a global base in a proper orthogonal decomposition provides a common base for analyzing flows, such as wind turbine wakes, across an entire parameter space. This can be used to compare flows with different conditions using the same physical interpretation. This work shows the convergence of the global base, its small error compared to the truncation error in the flow reconstruction, and the insensitivity to which datasets are included for generating the global base.
Maarten Paul van der Laan, Mark Kelly, Mads Baungaard, Antariksh Dicholkar, and Emily Louise Hodgson
Wind Energ. Sci., 9, 1985–2000, https://doi.org/10.5194/wes-9-1985-2024, https://doi.org/10.5194/wes-9-1985-2024, 2024
Short summary
Short summary
Wind turbines are increasing in size and operate more frequently above the atmospheric surface layer, which requires improved inflow models for numerical simulations of turbine interaction. In this work, a novel steady-state model of the atmospheric boundary layer (ABL) is introduced. Numerical wind turbine flow simulations subjected to shallow and tall ABLs are conducted, and the proposed model shows improved performance compared to other state-of-the-art steady-state models.
Jens Visbech, Tuhfe Göçmen, Özge Sinem Özçakmak, Alexander Meyer Forsting, Ásta Hannesdóttir, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 1811–1826, https://doi.org/10.5194/wes-9-1811-2024, https://doi.org/10.5194/wes-9-1811-2024, 2024
Short summary
Short summary
Leading-edge erosion (LEE) can impact wind turbine aerodynamics and wind farm efficiency. This study couples LEE prediction, aerodynamic loss modeling, and wind farm flow modeling to show that LEE's effects on wake dynamics can affect overall energy production. Without preventive initiatives, the effects of LEE increase over time, resulting in significant annual energy production (AEP) loss.
Maarten Paul van der Laan, Oscar García-Santiago, Mark Kelly, Alexander Meyer Forsting, Camille Dubreuil-Boisclair, Knut Sponheim Seim, Marc Imberger, Alfredo Peña, Niels Nørmark Sørensen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 8, 819–848, https://doi.org/10.5194/wes-8-819-2023, https://doi.org/10.5194/wes-8-819-2023, 2023
Short summary
Short summary
Offshore wind farms are more commonly installed in wind farm clusters, where wind farm interaction can lead to energy losses. In this work, an efficient numerical method is presented that can be used to estimate these energy losses. The novel method is verified with higher-fidelity numerical models and validated with measurements of an existing wind farm cluster.
Mac Gaunaa, Niels Troldborg, and Emmanuel Branlard
Wind Energ. Sci., 8, 503–513, https://doi.org/10.5194/wes-8-503-2023, https://doi.org/10.5194/wes-8-503-2023, 2023
Short summary
Short summary
We present an analytical vortex model. Despite its simplicity, the model is fully consistent with 1D momentum theory. It shows that the flow through a non-uniformly loaded rotor operating in non-uniform inflow behaves locally as predicted by 1D momentum theory. As a consequence, the local power coefficient (based on local inflow) of an ideal rotor is unaltered by the presence of shear. Finally, the model shows that there is no cross-shear deflection of the wake of a rotor in sheared inflow.
Koen Boorsma, Gerard Schepers, Helge Aagard Madsen, Georg Pirrung, Niels Sørensen, Galih Bangga, Manfred Imiela, Christian Grinderslev, Alexander Meyer Forsting, Wen Zhong Shen, Alessandro Croce, Stefano Cacciola, Alois Peter Schaffarczyk, Brandon Lobo, Frederic Blondel, Philippe Gilbert, Ronan Boisard, Leo Höning, Luca Greco, Claudio Testa, Emmanuel Branlard, Jason Jonkman, and Ganesh Vijayakumar
Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023, https://doi.org/10.5194/wes-8-211-2023, 2023
Short summary
Short summary
Within the framework of the fourth phase of the International Energy Agency's (IEA) Wind Task 29, a large comparison exercise between measurements and aeroelastic simulations has been carried out. Results were obtained from more than 19 simulation tools of various fidelity, originating from 12 institutes and compared to state-of-the-art field measurements. The result is a unique insight into the current status and accuracy of rotor aerodynamic modeling.
Søren Juhl Andersen and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 2117–2133, https://doi.org/10.5194/wes-7-2117-2022, https://doi.org/10.5194/wes-7-2117-2022, 2022
Short summary
Short summary
Simulating the turbulent flow inside large wind farms is inherently complex and computationally expensive. A new and fast model is developed based on data from high-fidelity simulations. The model captures the flow dynamics with correct statistics for a wide range of flow conditions. The model framework provides physical insights and presents a generalization of high-fidelity simulation results beyond the case-specific scenarios, which has significant potential for future turbulence modeling.
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825, https://doi.org/10.5194/wes-7-1791-2022, https://doi.org/10.5194/wes-7-1791-2022, 2022
Short summary
Short summary
The FarmConners benchmark is the first of its kind to bring a wide variety of data sets, control settings, and model complexities for the (initial) assessment of wind farm flow control benefits. Here we present the first part of the benchmark results for three blind tests with large-scale rotors and 11 participating models in total, via direct power comparisons at the turbines as well as the observed or estimated power gain at the wind farm level under wake steering control strategy.
Ang Li, Mac Gaunaa, Georg Raimund Pirrung, Alexander Meyer Forsting, and Sergio González Horcas
Wind Energ. Sci., 7, 1341–1365, https://doi.org/10.5194/wes-7-1341-2022, https://doi.org/10.5194/wes-7-1341-2022, 2022
Short summary
Short summary
A consistent method of using two-dimensional airfoil data when using generalized lifting-line methods for the aerodynamic load calculation of non-planar horizontal-axis wind turbines is described. The important conclusions from the unsteady two-dimensional airfoil aerodynamics are highlighted. The impact of using a simplified approach instead of using the full model on the prediction of the aerodynamic performance of non-planar rotors is shown numerically for different aerodynamic models.
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022, https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary
Short summary
The power performance of a wind turbine is often tested with the turbine standing in a row of several wind turbines, as it is assumed that the performance is not affected by the neighbouring turbines. We test this assumption with both simulations and measurements, and we show that the power performance can be either enhanced or lowered by the neighbouring wind turbines. Consequently, we also show how power performance testing might be biased when performed on a row of several wind turbines.
Mark Kelly, Søren Juhl Andersen, and Ásta Hannesdóttir
Wind Energ. Sci., 6, 1227–1245, https://doi.org/10.5194/wes-6-1227-2021, https://doi.org/10.5194/wes-6-1227-2021, 2021
Short summary
Short summary
Via 11 years of measurements, we made a representative ensemble of wind ramps in terms of acceleration, mean speed, and shear. Constrained turbulence and large-eddy simulations were coupled to an aeroelastic model for each ensemble member. Ramp acceleration was found to dominate the maxima of thrust-associated loads, with a ramp-induced increase of 45 %–50 % plus ~ 3 % per 0.1 m/s2 of bulk ramp acceleration magnitude. The LES indicates that the ramps (and such loads) persist through the farm.
Christian Grinderslev, Niels Nørmark Sørensen, Sergio González Horcas, Niels Troldborg, and Frederik Zahle
Wind Energ. Sci., 6, 627–643, https://doi.org/10.5194/wes-6-627-2021, https://doi.org/10.5194/wes-6-627-2021, 2021
Short summary
Short summary
This study investigates aero-elasticity of wind turbines present in the turbulent and chaotic wind flow of the lower atmosphere, using fluid–structure interaction simulations. This method combines structural response computations with high-fidelity modeling of the turbulent wind flow, using a novel turbulence model which combines the capabilities of large-eddy simulations for atmospheric flows with improved delayed detached eddy simulations for the separated flow near the rotor.
Søren Juhl Andersen, Simon-Philippe Breton, Björn Witha, Stefan Ivanell, and Jens Nørkær Sørensen
Wind Energ. Sci., 5, 1689–1703, https://doi.org/10.5194/wes-5-1689-2020, https://doi.org/10.5194/wes-5-1689-2020, 2020
Short summary
Short summary
The complexity of wind farm operation increases as the wind farms get larger and larger. Therefore, researchers from three universities have simulated numerous different large wind farms as part of an international benchmark. The study shows how simple engineering models can capture the general trends, but high-fidelity simulations are required in order to quantify the variability and uncertainty associated with power production of the wind farms and hence the potential profitability and risks.
Cited articles
Allen, J., King, R., and Barter, G.: Wind Farm Simulation and Layout
Optimization in Complex Terrain, J. Phys.: Conf. Ser., 1452, 012066, https://doi.org/10.1088/1742-6596/1452/1/012066, 2020. a
Bak, C.: Description of the DTU 10 MW Reference Wind Turbine, Tech. rep.,
DTU Wind Energy Report-I-0092, Technical University of Denmark, https://rwt.windenergy.dtu.dk/dtu10mw/dtu-10mw-rwt (last access: 18 July 2022), 2013. a
Berg, J., Troldborg, N., Sørensen, N., Patton, E. G., and Sullivan, P. P.:
Large-Eddy Simulation of turbine wake in complex terrain, J. Phys.: Conf. Ser., 854, 012003, https://doi.org/10.1088/1742-6596/854/1/012003, 2017. a
Borraccino, A., Wagner, R., Vignaroli, A., and Meyer Forsting, A.: Power
performance verification in complex terrain using nacelle lidars: the Hill of
Towie (HoT) campaign, no. 158 in DTU Wind Energy E, DTU Wind Energy, Denmark, https://orbit.dtu.dk/en/publications/power-performance-verification-in-complex-terrain-using-nacelle-l
(last access: 18 July 2022), 2017. a, b
Brodeur, P. and Masson, C.: Numerical site calibration over complex terrain,
J. Solar Energ. Eng., 130, 0310201–03102012, https://doi.org/10.1115/1.2931502, 2008. a
Castro, I.: Rough-wall boundary layers: Mean flow universality, J. Fluid Mech., 585, 469–485, https://doi.org/10.1017/S0022112007006921, 2007. a
Deardorff, J.: Stratocumulus-capped mixed layers derived from a
three-dimensional model, Bound.-Lay. Meteorol., 18, 495–527, https://doi.org/10.1007/BF00119502, 1980. a
Hodgson, E. L., Andersen, S. J., Troldborg, N., Forsting, A. M., Mikkelsen, R. F., and Sørensen, J. N.: A Quantitative Comparison of Aeroelastic
Computations using Flex5 and Actuator Methods in LES, J. Phys.: Conf. Ser., 1934, 012014, https://doi.org/10.1088/1742-6596/1934/1/012014, 2021. a, b
Jamieson, P.: Beating betz: Energy extraction limits in a constrained flow
field, J. Solar Energ. Eng., 131, 0310081–0310086, https://doi.org/10.1115/1.3139143, 2009. a
Liu, Z., Lu, S., and Ishihara, T.: Large eddy simulations of wind turbine wakes in typical complex topographies, Wind Energy, 24, 857–886,
https://doi.org/10.1002/we.2606, 2021. a
Menke, R., Vasiljević, N., Hansen, K., Hahmann, A., and Mann, J.: Does the wind turbine wake follow the topography? A multi-lidar study in complex
terrain, Wind Energ. Sci., 3, 681–691, https://doi.org/10.5194/wes-3-681-2018, 2018. a
Meyer Forsting, A., Bechmann, A., and Troldborg, N.: A numerical study on the
flow upstream of a wind turbine in complex terrain, J. Phys.: Conf. Ser., 753, 032041, https://doi.org/10.1088/1742-6596/753/3/032041, 2016. a, b
Meyer Forsting, A., Troldborg, N., and Gaunaa, M.: The flow upstream of a row
of aligned wind turbine rotors and its effect on power production, Wind
Energy, 20, 63–77, https://doi.org/10.1002/we.1991, 2017.
a, b
Nam, Y., Yoo, N., and Lee, J.: Site calibration for the wind turbine
performance evaluation, KSME Int. J., 18, 2250–2257, https://doi.org/10.1007/BF02990229, 2004. a
Oh, H. and Kim, B.: Comparison and verification of the deviation between
guaranteed and measured wind turbine power performance in complex terrain,
Energy, 85, 23–29, https://doi.org/10.1016/j.energy.2015.02.115, 2015. a, b
Øye, S.: FLEX4 Simulation of Wind Turbine Dynamics, in: Proceedings of 28th IEA Meeting of Experts Concerning State of the Art of Aeroelastic Codes for Wind Turbine Calculations, Lyngby, 1996. a
Sessarego, M., Shen, W. Z., van der Laan, M. P., Hansen, K. S., and Zhu, W. J.: CFD simulations of flows in a wind farm in complex terrain and comparisons to measurements, Appl. Sci. (Switzerland), 8, 788, https://doi.org/10.3390/app8050788, 2018. a
Shamsoddin, S. and Porté-Agel, F.: Large-Eddy Simulation of Atmospheric
Boundary-Layer Flow Through a Wind Farm Sited on Topography, Bound.-La.
Meteorol., 163, 1–17, https://doi.org/10.1007/s10546-016-0216-z, 2017. a
Sørensen, N. N.: General Purpose Flow Solver Applied to Flow over Hills, Phd thesis, Risø-R-827(EN), Risø National Laboratory, https://backend.orbit.dtu.dk/ws/portalfiles/portal/12280331/Ris_R_827.pdf (last access: 18 July 2022), 1995. a
Yang, X., Pakula, M., and Sotiropoulos, F.: Large-eddy simulation of a
utility-scale wind farm in complex terrain, Appl. Energy, 229, 767–777,
https://doi.org/10.1016/j.apenergy.2018.08.049, 2018. a
Short summary
This article shows that the power performance of a wind turbine may be very different in flat and complex terrain. This is an important finding because it shows that the power output of a given wind turbine is governed by not only the available wind at the position of the turbine but also how the ambient flow develops in the region behind the turbine.
This article shows that the power performance of a wind turbine may be very different in flat...
Altmetrics
Final-revised paper
Preprint