Articles | Volume 7, issue 1
https://doi.org/10.5194/wes-7-201-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-201-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Application of the Townsend–George theory for free shear flows to single and double wind turbine wakes – a wind tunnel study
LHEEA, CNRS, École Centrale de Nantes, 1 Rue de la Noë, 44321 Nantes, France
ForWind, Institute of Physics, University of Oldenburg, Küpkersweg, 26129 Oldenburg, Germany
ForWind, Institute of Physics, University of Oldenburg, Küpkersweg, 26129 Oldenburg, Germany
Martin Obligado
Université Grenoble Alpes, Grenoble-INP, LEGI, CNRS, 38000 Grenoble, France
Related authors
Caroline Braud, Pascal Keravec, Ingrid Neunaber, Sandrine Aubrun, Jean-Luc Attie, Pierre Durand, Philippe Ricaud, Jean-François Georgis, Emmanuel Leclerc, Lise Mourre, and Claire Taymans
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-12, https://doi.org/10.5194/wes-2025-12, 2025
Revised manuscript accepted for WES
Short summary
Short summary
A meteorological 3 year dataset from an operational wind farm of six 2 MW turbines, has been made available. This includes a meteorological mast equipped with sonic anemometers at four different heights and radiometer measurements for atmospheric stability analysis. Simultaneously, supervisory control and data acquisition (SCADA) and the scanned geometry of the turbine blades are provided. This database has been made accessible to the research community (https://awit.aeris-data.fr).
Rishabh Mishra, Emmanuel Guilmineau, Ingrid Neunaber, and Caroline Braud
Wind Energ. Sci., 9, 235–252, https://doi.org/10.5194/wes-9-235-2024, https://doi.org/10.5194/wes-9-235-2024, 2024
Short summary
Short summary
To investigate the impact of turbulence on aerodynamic forces, we first model turbulent kinetic energy decay theoretically using the Taylor length scale and employ this model to create a digital wind tunnel replica for simulating grid-generated turbulence. Experimental validation shows good alignment among theory, simulations, and experiments, paving the way for aerodynamic simulations. Finally, we successfully use the digital replica to obtain force coefficients for a 2D rotor blade section.
Daniela Moreno, Jan Friedrich, Carsten Schubert, Matthias Wächter, Jörg Schwarte, Gritt Pokriefke, Günter Radons, and Joachim Peinke
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-78, https://doi.org/10.5194/wes-2025-78, 2025
Revised manuscript under review for WES
Short summary
Short summary
Increased sizes of modern turbines require extended descriptions of the atmospheric wind and its correlation to loads. Here, a surrogate stochastic method for estimating the bending moments at the main shaft is proposed. Based on the Center for Wind Pressure dynamics, an advantage is the possibility of stochastically reconstructing large amounts of load data. Atmospheric measurements and modeled data demonstrate the validity of the method.
Wessel van der Deijl, Martín Obligado, Stéphane Barre, and Christophe Sicot
Wind Energ. Sci., 10, 719–732, https://doi.org/10.5194/wes-10-719-2025, https://doi.org/10.5194/wes-10-719-2025, 2025
Short summary
Short summary
We present a wind tunnel study on the effect of an adverse pressure gradient on wakes from porous discs and cylinders. We quantified the spatial development of turbulent wakes for Reynolds numbers up to 3.9 × 105 and at distances ranging from 1 to 12 diameters downstream, both with and without an adverse pressure gradient. Consistent with previous studies, we find that the pressure gradient has an effect in all cases, resulting in larger velocity deficits and wider wakes.
Branko Kosović, Sukanta Basu, Jacob Berg, Larry K. Berg, Sue E. Haupt, Xiaoli G. Larsén, Joachim Peinke, Richard J. A. M. Stevens, Paul Veers, and Simon Watson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-42, https://doi.org/10.5194/wes-2025-42, 2025
Preprint under review for WES
Short summary
Short summary
Most human activity happens in the layer of the atmosphere which extends a few hundred meters to a couple of kilometers above the surface of the Earth. The flow in this layer is turbulent. Turbulence impacts wind power production and turbine lifespan. Optimizing wind turbine performance requires understanding how turbulence affects both wind turbine efficiency and reliability. This paper points to gaps in our knowledge that need to be addressed to effectively utilize wind resources.
Carsten Schubert, Daniela Moreno, Jörg Schwarte, Jan Friedrich, Matthias Wächter, Gritt Pokriefke, Günter Radons, and Joachim Peinke
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-28, https://doi.org/10.5194/wes-2025-28, 2025
Preprint under review for WES
Short summary
Short summary
For modern wind turbines, the effects of inflow wind fluctuations on the loads are becoming increasingly critical. Based on field measurements and simulations, we identify “bump” events responsible for high damage equivalent loads. In this article, we introduce a new characteristic of a wind field: the virtual center of wind pressure which highly correlates to the identified load events observed in the operational measured data.
Caroline Braud, Pascal Keravec, Ingrid Neunaber, Sandrine Aubrun, Jean-Luc Attie, Pierre Durand, Philippe Ricaud, Jean-François Georgis, Emmanuel Leclerc, Lise Mourre, and Claire Taymans
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-12, https://doi.org/10.5194/wes-2025-12, 2025
Revised manuscript accepted for WES
Short summary
Short summary
A meteorological 3 year dataset from an operational wind farm of six 2 MW turbines, has been made available. This includes a meteorological mast equipped with sonic anemometers at four different heights and radiometer measurements for atmospheric stability analysis. Simultaneously, supervisory control and data acquisition (SCADA) and the scanned geometry of the turbine blades are provided. This database has been made accessible to the research community (https://awit.aeris-data.fr).
Daniela Moreno, Jan Friedrich, Matthias Wächter, Jörg Schwarte, and Joachim Peinke
Wind Energ. Sci., 10, 347–360, https://doi.org/10.5194/wes-10-347-2025, https://doi.org/10.5194/wes-10-347-2025, 2025
Short summary
Short summary
Unexpected load events measured on operating wind turbines are not accurately predicted by numerical simulations. We introduce the periods of constant wind speed as a possible cause of such events. We measure and characterize their statistics from atmospheric data. Further comparisons to standard modelled data and experimental turbulence data suggest that such events are not intrinsic to small-scale turbulence and are not accurately described by current standard wind models.
Christian Wiedemann, Hendrik Bette, Matthias Wächter, Jan A. Freund, Thomas Guhr, and Joachim Peinke
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-52, https://doi.org/10.5194/wes-2024-52, 2024
Revised manuscript accepted for WES
Short summary
Short summary
This study utilizes a method to analyze power conversion dynamics across different operational states, addressing non-stationarity with a correlation matrix algorithm. Findings reveal distinct dynamics for each state, emphasizing their impact on system behavior and offering a solution to hysteresis effects in power conversion dynamics.
Rishabh Mishra, Emmanuel Guilmineau, Ingrid Neunaber, and Caroline Braud
Wind Energ. Sci., 9, 235–252, https://doi.org/10.5194/wes-9-235-2024, https://doi.org/10.5194/wes-9-235-2024, 2024
Short summary
Short summary
To investigate the impact of turbulence on aerodynamic forces, we first model turbulent kinetic energy decay theoretically using the Taylor length scale and employ this model to create a digital wind tunnel replica for simulating grid-generated turbulence. Experimental validation shows good alignment among theory, simulations, and experiments, paving the way for aerodynamic simulations. Finally, we successfully use the digital replica to obtain force coefficients for a 2D rotor blade section.
Sirko Bartholomay, Tom T. B. Wester, Sebastian Perez-Becker, Simon Konze, Christian Menzel, Michael Hölling, Axel Spickenheuer, Joachim Peinke, Christian N. Nayeri, Christian Oliver Paschereit, and Kilian Oberleithner
Wind Energ. Sci., 6, 221–245, https://doi.org/10.5194/wes-6-221-2021, https://doi.org/10.5194/wes-6-221-2021, 2021
Short summary
Short summary
This paper presents two methods on how to estimate the lift force that is created by a wing. These methods were experimentally assessed in a wind tunnel. Furthermore, an active trailing-edge flap, as seen on airplanes for example, is used to alleviate fluctuating loads that are created within the employed wind tunnel. Thereby, an active flow control device that can potentially serve on wind turbines to lower fatigue or lower the material used for the blades is examined.
Khaled Yassin, Hassan Kassem, Bernhard Stoevesandt, Thomas Klemme, and Joachim Peinke
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-3, https://doi.org/10.5194/wes-2021-3, 2021
Revised manuscript not accepted
Short summary
Short summary
When ice forms on wind turbine blades, the smooth surface of the blade becomes rough which changes its aerodynamic performance. So, it is very important to know how to simulate this rough surface since most CFD simulations depend on assuming a smooth surface. This article compares different mathematical models specialized in simulating rough surfaces with results of real ice profiles. The study presents the most accurate model and recommends using it in future airflow simulation of iced blades.
Christian Behnken, Matthias Wächter, and Joachim Peinke
Wind Energ. Sci., 5, 1211–1223, https://doi.org/10.5194/wes-5-1211-2020, https://doi.org/10.5194/wes-5-1211-2020, 2020
Short summary
Short summary
We extend the common characterisation and modelling of wind time series with respect to higher-order statistics. We present an approach which enables us to obtain the general multipoint statistics of wind time series measured. This work is an important step in a more comprehensive description of wind also including extreme events. Important is that we show how stochastic equations can be derived from measured wind data which can be used to model long time series.
Cited articles
Barthelmie, R. J., Larsen, G., Frandsen, S., Folkerts, L., Rados, K., Pryor,
S., Lange, B., and Schepers, G.: Comparison of wake model simulations with
offshore wind turbine wake profiles measured by sodar, J. Atmos. Ocean. Tech., 23, 888–901, 2006. a
Barthelmie, R. J., Frandsen, S. T., Nielsen, M. N., Pryor, S. C., Rethore,
P.-E., and Jørgensen, H. E.: Modelling and Measurements of Power Losses
and Turbulence Intensity in Wind Turbine Wakes at Middelgrunden Offshore Wind
Farm, Wind Energy, 10, 517–528, https://doi.org/10.1002/we.238, 2007. a
Es-Sahli, O., Sescu, A., Afsar, M. Z., and Buxton, O. R. H.: Investigation of
wakes generated by fractal plates in the compressible flow regime using
large-eddy simulations, Physics of Fluids, 32, 105106,
https://doi.org/10.1063/5.0018712, 2020. a
Göçmen, T., van der Laan, P., Réthoré, P.-E., na Diaz, A. P.,
Larsen, G. C., and Ott, S.: Wind turbine wake models developed at the
technical university of Denmark: A review, Renew. Sustain. Energ. Rev., 60,
752–769, https://doi.org/10.1016/j.rser.2016.01.113, 2016. a
Hinze, J.: Turbulence, in: McGraw-Hill classic textbook reissue series,
McGraw-Hill, ISBN 9780070290372, 1975. a
Hultmark, M. and Smits, A. J.: Temperature corrections for constant temperature and constant current hot-wire anemometers, Meas. Sci. Technol., 21, 105404, https://doi.org/10.1088/0957-0233/21/10/105404, 2010. a
Jensen, N. O.: A note on wind generator interaction, Tech. rep., Risø
National Laboratory, Roskilde, Denmark, 1983. a
Johansson, P., George, W., and Gourlay, M.: Equilibrium similarity, effects of initial conditions and local Reynolds number on the axisymmetric wake, Phys. Fluids, 15, 603, https://doi.org/10.1063/1.1536976, 2003. a
Kröger, L., Frederik, J., van Wingerden, J.-W., Peinke, J., and
Hölling, M.: Generation of user defined turbulent inflow conditions by an
active grid for validation experiments, J. Phys.: Conf. Ser., 1037, 052002,
https://doi.org/10.1088/1742-6596/1037/5/052002, 2018. a
Nedic, J., Vassilicos, J., and Ganapathisubramani, B.: Axisymmetric Turbulent
Wakes with New Nonequilibrium Similarity Scalings, Phys. Rev. Lett., 111, 144503, https://doi.org/10.1103/PhysRevLett.111.144503, 2013. a
Neunaber, I., Obligado, M., Peinke, J., and Aubrun, S.: Application of the
Townsend-George wake theory to field measurements of wind turbine wakes, J. Phys.: Conf. Ser., 1934, 012004, https://doi.org/10.1088/1742-6596/1934/1/012004, 2021. a
Obligado, M., Dairay, T., and Vassilicos, J.: Non-equilibrium scaling of
turbulent wakes, Phys. Rev. Fluids, 1, 044409, https://doi.org/10.1103/PhysRevFluids.1.044409, 2016. a
Okulov, V., Naumov, I., Mikkelsen, R. F., and Sørensen, J. N.: Wake effect
on a uniform flow behind wind-turbine model, J. Phys.: Conf. Ser., 625, 012011, https://doi.org/10.1088/1742-6596/625/1/012011, 2015. a, b
Petrović, V., Schottler, J., Neunaber, I., Hölling, M., and Kühn,
M.: Wind tunnel validation of a closed loop active power control for wind
farms, J. Phys.: Conf. Ser., 1037, 032020, https://doi.org/10.1088/1742-6596/1037/3/032020, 2018. a
Platis, A., Bange, J., Bärfuss, K., Cññadillas, B., Hundhausen, M., Djath, B., Lampert, A., Schulz-Stellenfleth, J., Siedersleben, S., and and Stefan Emeis, T. N.: Long-range modifications of the wind field by offshore
windparks – results of the project WIPAFF, Energy Meteorol., 29, 355–376, https://doi.org/10.1127/metz/2020/1023, 2020. a
Pope, S.: Turbulent Flows, Cambridge University Press, ISBN 0 521 59886 9, 2000. a
Porté-Agel, F., Bastankhah, M., and Shamsoddin, S.: Wind-Turbine and
Wind-Farm Flows: A Review, Bound.-Lay. Meteorol., 174, 1–59,
https://doi.org/10.1007/s10546-019-00473-0, 2020. a, b, c
Schottler, J., Bartl, J., Mühle, F., Sætran, L., Peinke, J., and Hölling, M.: Wind tunnel experiments on wind turbine wakes in yaw: redefining the wake width, Wind Energ. Sci., 3, 257–273, https://doi.org/10.5194/wes-3-257-2018, 2018. a, b
Stein, V. P. and Kaltenbach, H. J.: Non-Equilibrium Scaling Applied to the Wake Evolution of a Model Scale Wind Turbine, Energies, 12, 2763, https://doi.org/10.3390/en12142763, 2019. a, b, c
Stevens, R. J. and Meneveau, C.: Flow structure and turbulence in wind farms,
Annu. Rev. Fluid Mech., 49, 311–339, https://doi.org/10.1146/annurev-fluid-010816-060206, 2017. a, b
Sun, H., Gao, X., and Yang, H.: A review of full-scale wind-field measurements of the wind-turbine wake effect and a measurement of the wake-interaction effect, Renew. Sustain. Energ. Rev., 132, 110042,
https://doi.org/10.1016/j.rser.2020.110042, 2020. a
Volker, P. J. H., Badger, J., Hahmann, A. N., and Ott, S.: The Explicit Wake
Parametrisation V1.0: a wind farm parametrisation in the mesoscale model WRF,
Geosci. Model Dev., 8, 3715–3731, https://doi.org/10.5194/gmd-8-3715-2015, 2015. a
Short summary
Wind turbines are often clustered within wind farms. A consequence is that some wind turbines may be exposed to the wakes of other turbines, which reduces their lifetime due to the wake turbulence. Knowledge of the wake is thus important, and we carried out wind tunnel experiments to investigate the wakes. We show how models that describe wakes of bluff bodies can help to improve the understanding of wind turbine wakes and wind turbine wake models, particularly by including a virtual origin.
Wind turbines are often clustered within wind farms. A consequence is that some wind turbines...
Altmetrics
Final-revised paper
Preprint