Articles | Volume 7, issue 1
https://doi.org/10.5194/wes-7-323-2022
https://doi.org/10.5194/wes-7-323-2022
Research article
 | 
09 Feb 2022
Research article |  | 09 Feb 2022

Validation of a coupled atmospheric–aeroelastic model system for wind turbine power and load calculations

Sonja Krüger, Gerald Steinfeld, Martin Kraft, and Laura J. Lukassen

Related authors

The impact of low-level jets on the power generated by offshore wind turbines
Johannes Paulsen, Jörge Schneemann, Gerald Steinfeld, Frauke Theuer, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-118,https://doi.org/10.5194/wes-2025-118, 2025
Preprint under review for WES
Short summary
Improved coupling between an atmospheric LES and an aeroelastic code for the simulation of wind turbines under heterogeneous inflow
Sonja Steinbrück, Thorben Eilers, Lukas Vollmer, Kerstin Avila, and Gerald Steinfeld
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-146,https://doi.org/10.5194/wes-2024-146, 2024
Preprint withdrawn
Short summary
Influence of rotor blade flexibility on the near-wake behavior of the NREL 5 MW wind turbine
Leo Höning, Laura J. Lukassen, Bernhard Stoevesandt, and Iván Herráez
Wind Energ. Sci., 9, 203–218, https://doi.org/10.5194/wes-9-203-2024,https://doi.org/10.5194/wes-9-203-2024, 2024
Short summary
Wind vane correction during yaw misalignment for horizontal-axis wind turbines
Andreas Rott, Leo Höning, Paul Hulsman, Laura J. Lukassen, Christof Moldenhauer, and Martin Kühn
Wind Energ. Sci., 8, 1755–1770, https://doi.org/10.5194/wes-8-1755-2023,https://doi.org/10.5194/wes-8-1755-2023, 2023
Short summary
Increased power gains from wake steering control using preview wind direction information
Balthazar Arnoldus Maria Sengers, Andreas Rott, Eric Simley, Michael Sinner, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 8, 1693–1710, https://doi.org/10.5194/wes-8-1693-2023,https://doi.org/10.5194/wes-8-1693-2023, 2023
Short summary

Cited articles

Arakawa, U. and Lamb, V.: Computational design of the basic dynamical processes of the UCLA general circulation model, in: General Circulation Models of the Atmosphere, Methods in Computational Physics, 17, 173–265, 1977. a
Baldauf, M.: Stability analysis for linear discretisations of the advection equation with Runge-Kutta time integration, J. Comput. Phys., 227, 6638–6659, 2008. a
Bromm, M., Vollmer, L., and Kühn, M.: Numerical investigation of wind turbine wake development in directionally sheared inflow, Wind Energy, 20, 381–395, 2017. a, b, c
Churchfield, M., Lee, S., Michalakes, J., and Moriarty, P. J.: A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics, J. Turbul., 13, 1–32, 2012. a, b
Download
Short summary
Detailed numerical simulations of turbines in atmospheric conditions are challenging with regard to their computational demand. We coupled an atmospheric flow model and a turbine model in order to deliver extensive details about the flow and the turbine response within reasonable computational time. A comparison to measurement data was performed and showed a very good agreement. The efficiency of the tool enables applications such as load calculation in wind farms or during low-level-jet events.
Share
Altmetrics
Final-revised paper
Preprint