Articles | Volume 7, issue 1
https://doi.org/10.5194/wes-7-37-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-37-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Local-thermal-gradient and large-scale-circulation impacts on turbine-height wind speed forecasting over the Columbia River Basin
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Yun Qian
CORRESPONDING AUTHOR
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Larry K. Berg
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Related authors
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024, https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Short summary
A process-based plant carbon (C)–nitrogen (N) interface coupling framework has been developed which mainly focuses on plant resistance and N-limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem–biogeochemical model, and testing results show a general improvement in simulating plant properties with this framework.
Ye Liu, Huilin Huang, Sing-Chun Wang, Tao Zhang, Donghui Xu, and Yang Chen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-151, https://doi.org/10.5194/gmd-2024-151, 2024
Revised manuscript under review for GMD
Short summary
Short summary
This study integrates machine learning with a land surface model to improve wildfire predictions in North America. Traditional models struggle with accurately simulating burned areas due to simplified processes. By combining the predictive power of machine learning with a land model, our hybrid framework better captures fire dynamics. This approach enhances our understanding of wildfire behavior and aids in developing more effective climate and fire management strategies.
Ye Liu, Yun Qian, Larry K. Berg, Zhe Feng, Jianfeng Li, Jingyi Chen, and Zhao Yang
Atmos. Chem. Phys., 24, 8165–8181, https://doi.org/10.5194/acp-24-8165-2024, https://doi.org/10.5194/acp-24-8165-2024, 2024
Short summary
Short summary
Deep convection under various large-scale meteorological patterns (LSMPs) shows distinct precipitation features. In southeastern Texas, mesoscale convective systems (MCSs) contribute significantly to precipitation year-round, while isolated deep convection (IDC) is prominent in summer and fall. Self-organizing maps (SOMs) reveal convection can occur without large-scale lifting or moisture convergence. MCSs and IDC events have distinct life cycles influenced by specific LSMPs.
Ye Liu, Timothy W. Juliano, Raghavendra Krishnamurthy, Brian J. Gaudet, and Jungmin Lee
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-76, https://doi.org/10.5194/wes-2024-76, 2024
Revised manuscript accepted for WES
Short summary
Short summary
Our study reveals how different weather patterns influence wind conditions off the U.S. West Coast. We identified key weather patterns affecting wind speeds at potential wind farm sites using advanced machine learning. This research helps improve weather prediction models, making wind energy production more reliable and efficient.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William Sacks, Ethan Coon, and Robert Hetland
EGUsphere, https://doi.org/10.5194/egusphere-2024-1555, https://doi.org/10.5194/egusphere-2024-1555, 2024
Short summary
Short summary
We integrate E3SM land model (ELM) with the WRF Model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) – Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM, and ESMF caps for ELM initialization, execution, and finalization. The LILAC-ESMF framework maintains the integrity of the ELM’s source code structure and facilitates the transfer of future developments in LSMs to WRF-ELM.
Tao Zhang, Cyril Morcrette, Meng Zhang, Wuyin Lin, Shaocheng Xie, Ye Liu, Kwinten Van Weverberg, and Joana Rodrigues
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-79, https://doi.org/10.5194/gmd-2024-79, 2024
Preprint under review for GMD
Short summary
Short summary
Earth System Models (ESMs) struggle the uncertainties associated with parameterizing sub-grid physics. Machine learning (ML) algorithms offer a solution by learning the important relationships and features from high-resolution models. To incorporate ML parameterizations into ESMs, we develop a Fortran-Python interface that allows for calling Python functions within Fortran-based ESMs. Through two case studies, this interface demonstrates its feasibility, modularity and effectiveness.
Lindsay M. Sheridan, Raghavendra Krishnamurthy, William I. Gustafson Jr., Ye Liu, Brian J. Gaudet, Nicola Bodini, Rob K. Newsom, and Mikhail Pekour
Wind Energ. Sci., 9, 741–758, https://doi.org/10.5194/wes-9-741-2024, https://doi.org/10.5194/wes-9-741-2024, 2024
Short summary
Short summary
In 2020, lidar-mounted buoys owned by the US Department of Energy (DOE) were deployed off the California coast in two wind energy lease areas and provided valuable year-long analyses of offshore low-level jet (LLJ) characteristics at heights relevant to wind turbines. In addition to the LLJ climatology, this work provides validation of LLJ representation in atmospheric models that are essential for assessing the potential energy yield of offshore wind farms.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
EGUsphere, https://doi.org/10.5194/egusphere-2022-1111, https://doi.org/10.5194/egusphere-2022-1111, 2022
Preprint archived
Short summary
Short summary
A process-based plant Carbon (C)-Nitrogen (N) interface coupling framework has been developed, which mainly focuses on the plant resistance and N limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem-biogeochemical model and testing results show a general improvement in simulating plant properties with this framework.
Huilin Huang, Yongkang Xue, Ye Liu, Fang Li, and Gregory S. Okin
Geosci. Model Dev., 14, 7639–7657, https://doi.org/10.5194/gmd-14-7639-2021, https://doi.org/10.5194/gmd-14-7639-2021, 2021
Short summary
Short summary
This study applies a fire-coupled dynamic vegetation model to quantify fire impact at monthly to annual scales. We find fire reduces grass cover by 4–8 % annually for widespread areas in south African savanna and reduces tree cover by 1 % at the periphery of tropical Congolese rainforest. The grass cover reduction peaks at the beginning of the rainy season, which quickly diminishes before the next fire season. In contrast, the reduction of tree cover is irreversible within one growing season.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Huilin Huang, Yongkang Xue, Fang Li, and Ye Liu
Geosci. Model Dev., 13, 6029–6050, https://doi.org/10.5194/gmd-13-6029-2020, https://doi.org/10.5194/gmd-13-6029-2020, 2020
Short summary
Short summary
We developed a fire-coupled dynamic vegetation model that captures the spatial distribution, temporal variability, and especially the seasonal variability of fire regimes. The fire model is applied to assess the long-term fire impact on ecosystems and surface energy. We find that fire is an important determinant of the structure and function of the tropical savanna. By changing the vegetation composition and ecosystem characteristics, fire significantly alters surface energy balance.
Ye Liu, Yongkang Xue, Glen MacDonald, Peter Cox, and Zhengqiu Zhang
Earth Syst. Dynam., 10, 9–29, https://doi.org/10.5194/esd-10-9-2019, https://doi.org/10.5194/esd-10-9-2019, 2019
Short summary
Short summary
Climate regime shift during the 1980s identified by abrupt change in temperature, precipitation, etc. had a substantial impact on the ecosystem at different scales. Our paper identifies the spatial and temporal characteristics of the effects of climate variability, global warming, and eCO2 on ecosystem trends before and after the shift. We found about 15 % (20 %) of the global land area had enhanced positive trend (trend sign reversed) during the 1980s due to climate regime shift.
Xueqian Wang, Weidong Guo, Bo Qiu, Ye Liu, Jianning Sun, and Aijun Ding
Atmos. Chem. Phys., 17, 4989–4996, https://doi.org/10.5194/acp-17-4989-2017, https://doi.org/10.5194/acp-17-4989-2017, 2017
Short summary
Short summary
Land use or cover change is a fundamental anthropogenic forcing for climate change. Based on field observations, we quantified the contributions of different factors to surface temperature change and deepened the understanding of its mechanisms. We found evaporative cooling plays the most important role in the temperature change, while radiative forcing, which is traditionally emphasized, is not significant. This study provided firsthand evidence to verify the model results in IPCC AR5.
Lindsay M. Sheridan, Jiali Wang, Caroline Draxl, Nicola Bodini, Caleb Phillips, Dmitry Duplyakin, Heidi Tinnesand, Raj K. Rai, Julia E. Flaherty, Larry K. Berg, Chunyong Jung, and Ethan Young
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-115, https://doi.org/10.5194/wes-2024-115, 2024
Revised manuscript under review for WES
Short summary
Short summary
Three recent wind resource datasets are assessed for their skills in representing annual average wind speeds and seasonal, diurnal, and inter-annual trends in the wind resource to support customers interested in small and midsize wind energy.
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024, https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Short summary
A process-based plant carbon (C)–nitrogen (N) interface coupling framework has been developed which mainly focuses on plant resistance and N-limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem–biogeochemical model, and testing results show a general improvement in simulating plant properties with this framework.
Ye Liu, Huilin Huang, Sing-Chun Wang, Tao Zhang, Donghui Xu, and Yang Chen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-151, https://doi.org/10.5194/gmd-2024-151, 2024
Revised manuscript under review for GMD
Short summary
Short summary
This study integrates machine learning with a land surface model to improve wildfire predictions in North America. Traditional models struggle with accurately simulating burned areas due to simplified processes. By combining the predictive power of machine learning with a land model, our hybrid framework better captures fire dynamics. This approach enhances our understanding of wildfire behavior and aids in developing more effective climate and fire management strategies.
Ye Liu, Yun Qian, Larry K. Berg, Zhe Feng, Jianfeng Li, Jingyi Chen, and Zhao Yang
Atmos. Chem. Phys., 24, 8165–8181, https://doi.org/10.5194/acp-24-8165-2024, https://doi.org/10.5194/acp-24-8165-2024, 2024
Short summary
Short summary
Deep convection under various large-scale meteorological patterns (LSMPs) shows distinct precipitation features. In southeastern Texas, mesoscale convective systems (MCSs) contribute significantly to precipitation year-round, while isolated deep convection (IDC) is prominent in summer and fall. Self-organizing maps (SOMs) reveal convection can occur without large-scale lifting or moisture convergence. MCSs and IDC events have distinct life cycles influenced by specific LSMPs.
Ye Liu, Timothy W. Juliano, Raghavendra Krishnamurthy, Brian J. Gaudet, and Jungmin Lee
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-76, https://doi.org/10.5194/wes-2024-76, 2024
Revised manuscript accepted for WES
Short summary
Short summary
Our study reveals how different weather patterns influence wind conditions off the U.S. West Coast. We identified key weather patterns affecting wind speeds at potential wind farm sites using advanced machine learning. This research helps improve weather prediction models, making wind energy production more reliable and efficient.
Jianfeng Li, Andrew Geiss, Zhe Feng, L. Ruby Leung, Yun Qian, and Wenjun Cui
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-112, https://doi.org/10.5194/essd-2024-112, 2024
Preprint under review for ESSD
Short summary
Short summary
We develop a high-resolution (4 km and hourly) observational derecho dataset over the United States east of the Rocky Mountains from 2004 to 2021 by using a mesoscale convective system dataset, bow echo detection based on a machine learning method, hourly gust speed measurements, and physically based identification criteria.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William Sacks, Ethan Coon, and Robert Hetland
EGUsphere, https://doi.org/10.5194/egusphere-2024-1555, https://doi.org/10.5194/egusphere-2024-1555, 2024
Short summary
Short summary
We integrate E3SM land model (ELM) with the WRF Model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) – Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM, and ESMF caps for ELM initialization, execution, and finalization. The LILAC-ESMF framework maintains the integrity of the ELM’s source code structure and facilitates the transfer of future developments in LSMs to WRF-ELM.
Tao Zhang, Cyril Morcrette, Meng Zhang, Wuyin Lin, Shaocheng Xie, Ye Liu, Kwinten Van Weverberg, and Joana Rodrigues
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-79, https://doi.org/10.5194/gmd-2024-79, 2024
Preprint under review for GMD
Short summary
Short summary
Earth System Models (ESMs) struggle the uncertainties associated with parameterizing sub-grid physics. Machine learning (ML) algorithms offer a solution by learning the important relationships and features from high-resolution models. To incorporate ML parameterizations into ESMs, we develop a Fortran-Python interface that allows for calling Python functions within Fortran-based ESMs. Through two case studies, this interface demonstrates its feasibility, modularity and effectiveness.
Lindsay M. Sheridan, Dmitry Duplyakin, Caleb Phillips, Heidi Tinnesand, Raj K. Rai, Julia E. Flaherty, and Larry K. Berg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-37, https://doi.org/10.5194/wes-2024-37, 2024
Revised manuscript under review for WES
Short summary
Short summary
Twelve months of onsite wind measurement is standard for correcting model-based long-term wind speed estimates for utility-scale wind farms, however, the time and capital investment involved in gathering onsite measurements must be reconciled with the energy needs and funding opportunities for distributed wind projects. This study aims to answer the question of how low can you go in terms of the observational time period needed to make impactful improvements to long-term wind speed estimates.
Weiming Ma, Hailong Wang, Gang Chen, Yun Qian, Ian Baxter, Yiling Huo, and Mark W. Seefeldt
Atmos. Chem. Phys., 24, 4451–4472, https://doi.org/10.5194/acp-24-4451-2024, https://doi.org/10.5194/acp-24-4451-2024, 2024
Short summary
Short summary
Extreme warming events with surface temperature going above 0°C can occur in the high-Arctic winter. Although reanalysis data show that these events were short-lived and occurred rarely during 1980–2021, they have become more frequent, stronger, and longer lasting latterly. A dipole pattern, comprising high- and low-pressure systems, is found to be the key in driving them. These findings have implications for the recent changes in sea ice, hydrological cycle, and ecosystem over the Arctic.
Lindsay M. Sheridan, Raghavendra Krishnamurthy, William I. Gustafson Jr., Ye Liu, Brian J. Gaudet, Nicola Bodini, Rob K. Newsom, and Mikhail Pekour
Wind Energ. Sci., 9, 741–758, https://doi.org/10.5194/wes-9-741-2024, https://doi.org/10.5194/wes-9-741-2024, 2024
Short summary
Short summary
In 2020, lidar-mounted buoys owned by the US Department of Energy (DOE) were deployed off the California coast in two wind energy lease areas and provided valuable year-long analyses of offshore low-level jet (LLJ) characteristics at heights relevant to wind turbines. In addition to the LLJ climatology, this work provides validation of LLJ representation in atmospheric models that are essential for assessing the potential energy yield of offshore wind farms.
Yawen Liu, Yun Qian, Philip J. Rasch, Kai Zhang, Lai-yung Ruby Leung, Yuhang Wang, Minghuai Wang, Hailong Wang, Xin Huang, and Xiu-Qun Yang
Atmos. Chem. Phys., 24, 3115–3128, https://doi.org/10.5194/acp-24-3115-2024, https://doi.org/10.5194/acp-24-3115-2024, 2024
Short summary
Short summary
Fire management has long been a challenge. Here we report that spring-peak fire activity over southern Mexico and Central America (SMCA) has a distinct quasi-biennial signal by measuring multiple fire metrics. This signal is initially driven by quasi-biennial variability in precipitation and is further amplified by positive feedback of fire–precipitation interaction at short timescales. This work highlights the importance of fire–climate interactions in shaping fires on an interannual scale.
Yuying Zhang, Shaocheng Xie, Yi Qin, Wuyin Lin, Jean-Christophe Golaz, Xue Zheng, Po-Lun Ma, Yun Qian, Qi Tang, Christopher R. Terai, and Meng Zhang
Geosci. Model Dev., 17, 169–189, https://doi.org/10.5194/gmd-17-169-2024, https://doi.org/10.5194/gmd-17-169-2024, 2024
Short summary
Short summary
We performed systematic evaluation of clouds simulated in the Energy
Exascale Earth System Model (E3SMv2) to document model performance and understand what updates in E3SMv2 have caused changes in clouds from E3SMv1 to E3SMv2. We find that stratocumulus clouds along the subtropical west coast of continents are dramatically improved, primarily due to the retuning done in CLUBB. This study offers additional insights into clouds simulated in E3SMv2 and will benefit future E3SM developments.
Exascale Earth System Model (E3SMv2) to document model performance and understand what updates in E3SMv2 have caused changes in clouds from E3SMv1 to E3SMv2. We find that stratocumulus clouds along the subtropical west coast of continents are dramatically improved, primarily due to the retuning done in CLUBB. This study offers additional insights into clouds simulated in E3SMv2 and will benefit future E3SM developments.
Sue Ellen Haupt, Branko Kosović, Larry K. Berg, Colleen M. Kaul, Matthew Churchfield, Jeffrey Mirocha, Dries Allaerts, Thomas Brummet, Shannon Davis, Amy DeCastro, Susan Dettling, Caroline Draxl, David John Gagne, Patrick Hawbecker, Pankaj Jha, Timothy Juliano, William Lassman, Eliot Quon, Raj K. Rai, Michael Robinson, William Shaw, and Regis Thedin
Wind Energ. Sci., 8, 1251–1275, https://doi.org/10.5194/wes-8-1251-2023, https://doi.org/10.5194/wes-8-1251-2023, 2023
Short summary
Short summary
The Mesoscale to Microscale Coupling team, part of the U.S. Department of Energy Atmosphere to Electrons (A2e) initiative, has studied various important challenges related to coupling mesoscale models to microscale models. Lessons learned and discerned best practices are described in the context of the cases studied for the purpose of enabling further deployment of wind energy. It also points to code, assessment tools, and data for testing the methods.
Sheng-Lun Tai, Larry K. Berg, Raghavendra Krishnamurthy, Rob Newsom, and Anthony Kirincich
Wind Energ. Sci., 8, 433–448, https://doi.org/10.5194/wes-8-433-2023, https://doi.org/10.5194/wes-8-433-2023, 2023
Short summary
Short summary
Turbulence intensity is critical for wind turbine design and operation as it affects wind power generation efficiency. Turbulence measurements in the marine environment are limited. We use a model to derive turbulence intensity and test how sea surface temperature data may impact the simulated turbulence intensity and atmospheric stability. The model slightly underestimates turbulence, and improved sea surface temperature data reduce the bias. Error with unrealistic mesoscale flow is identified.
Chandan Sarangi, Yun Qian, L. Ruby Leung, Yang Zhang, Yufei Zou, and Yuhang Wang
Atmos. Chem. Phys., 23, 1769–1783, https://doi.org/10.5194/acp-23-1769-2023, https://doi.org/10.5194/acp-23-1769-2023, 2023
Short summary
Short summary
We show that for air quality, the densely populated eastern US may see even larger impacts of wildfires due to long-distance smoke transport and associated positive climatic impacts, partially compensating the improvements from regulations on anthropogenic emissions. This study highlights the tension between natural and anthropogenic contributions and the non-local nature of air pollution that complicate regulatory strategies for improving future regional air quality for human health.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
William J. Shaw, Larry K. Berg, Mithu Debnath, Georgios Deskos, Caroline Draxl, Virendra P. Ghate, Charlotte B. Hasager, Rao Kotamarthi, Jeffrey D. Mirocha, Paytsar Muradyan, William J. Pringle, David D. Turner, and James M. Wilczak
Wind Energ. Sci., 7, 2307–2334, https://doi.org/10.5194/wes-7-2307-2022, https://doi.org/10.5194/wes-7-2307-2022, 2022
Short summary
Short summary
This paper provides a review of prominent scientific challenges to characterizing the offshore wind resource using as examples phenomena that occur in the rapidly developing wind energy areas off the United States. The paper also describes the current state of modeling and observations in the marine atmospheric boundary layer and provides specific recommendations for filling key current knowledge gaps.
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
EGUsphere, https://doi.org/10.5194/egusphere-2022-1111, https://doi.org/10.5194/egusphere-2022-1111, 2022
Preprint archived
Short summary
Short summary
A process-based plant Carbon (C)-Nitrogen (N) interface coupling framework has been developed, which mainly focuses on the plant resistance and N limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem-biogeochemical model and testing results show a general improvement in simulating plant properties with this framework.
Kai Zhang, Wentao Zhang, Hui Wan, Philip J. Rasch, Steven J. Ghan, Richard C. Easter, Xiangjun Shi, Yong Wang, Hailong Wang, Po-Lun Ma, Shixuan Zhang, Jian Sun, Susannah M. Burrows, Manish Shrivastava, Balwinder Singh, Yun Qian, Xiaohong Liu, Jean-Christophe Golaz, Qi Tang, Xue Zheng, Shaocheng Xie, Wuyin Lin, Yan Feng, Minghuai Wang, Jin-Ho Yoon, and L. Ruby Leung
Atmos. Chem. Phys., 22, 9129–9160, https://doi.org/10.5194/acp-22-9129-2022, https://doi.org/10.5194/acp-22-9129-2022, 2022
Short summary
Short summary
Here we analyze the effective aerosol forcing simulated by E3SM version 1 using both century-long free-running and short nudged simulations. The aerosol forcing in E3SMv1 is relatively large compared to other models, mainly due to the large indirect aerosol effect. Aerosol-induced changes in liquid and ice cloud properties in E3SMv1 have a strong correlation. The aerosol forcing estimates in E3SMv1 are sensitive to the parameterization changes in both liquid and ice cloud processes.
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Lindsay M. Sheridan, Caleb Phillips, Alice C. Orrell, Larry K. Berg, Heidi Tinnesand, Raj K. Rai, Sagi Zisman, Dmitry Duplyakin, and Julia E. Flaherty
Wind Energ. Sci., 7, 659–676, https://doi.org/10.5194/wes-7-659-2022, https://doi.org/10.5194/wes-7-659-2022, 2022
Short summary
Short summary
The small wind community relies on simplified wind models and energy production simulation tools to obtain energy generation expectations. We gathered actual wind speed and turbine production data across the US to test the accuracy of models and tools for small wind turbines. This study provides small wind installers and owners with the error metrics and sources of error associated with using models and tools to make performance estimates, empowering them to adjust expectations accordingly.
Sally S.-C. Wang, Yun Qian, L. Ruby Leung, and Yang Zhang
Atmos. Chem. Phys., 22, 3445–3468, https://doi.org/10.5194/acp-22-3445-2022, https://doi.org/10.5194/acp-22-3445-2022, 2022
Short summary
Short summary
This study develops an interpretable machine learning (ML) model predicting monthly PM2.5 fire emission over the contiguous US at 0.25° resolution and compares the prediction skills of the ML and process-based models. The comparison facilitates attributions of model biases and better understanding of the strengths and uncertainties in the two types of models at regional scales, for informing future model development and their applications in fire emission projection.
Huilin Huang, Yongkang Xue, Ye Liu, Fang Li, and Gregory S. Okin
Geosci. Model Dev., 14, 7639–7657, https://doi.org/10.5194/gmd-14-7639-2021, https://doi.org/10.5194/gmd-14-7639-2021, 2021
Short summary
Short summary
This study applies a fire-coupled dynamic vegetation model to quantify fire impact at monthly to annual scales. We find fire reduces grass cover by 4–8 % annually for widespread areas in south African savanna and reduces tree cover by 1 % at the periphery of tropical Congolese rainforest. The grass cover reduction peaks at the beginning of the rainy season, which quickly diminishes before the next fire season. In contrast, the reduction of tree cover is irreversible within one growing season.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Raghavendra Krishnamurthy, Rob K. Newsom, Larry K. Berg, Heng Xiao, Po-Lun Ma, and David D. Turner
Atmos. Meas. Tech., 14, 4403–4424, https://doi.org/10.5194/amt-14-4403-2021, https://doi.org/10.5194/amt-14-4403-2021, 2021
Short summary
Short summary
Planetary boundary layer (PBL) height is a critical parameter in atmospheric models. Continuous PBL height measurements from remote sensing measurements are important to understand various boundary layer mechanisms, especially during daytime and evening transition periods. Due to several limitations in existing methodologies to detect PBL height from a Doppler lidar, in this study, a machine learning (ML) approach is tested. The ML model is observed to improve the accuracy by over 50 %.
Jianfeng Li, Zhe Feng, Yun Qian, and L. Ruby Leung
Earth Syst. Sci. Data, 13, 827–856, https://doi.org/10.5194/essd-13-827-2021, https://doi.org/10.5194/essd-13-827-2021, 2021
Short summary
Short summary
Deep convection has different properties at different scales. We develop a 4 km h−1 observational data product of mesoscale convective systems and isolated deep convection in the United States from 2004–2017. We find that both types of convective systems contribute significantly to precipitation east of the Rocky Mountains but with distinct spatiotemporal characteristics. The data product will be useful for observational analyses and model evaluations of convection events at different scales.
Caroline Draxl, Rochelle P. Worsnop, Geng Xia, Yelena Pichugina, Duli Chand, Julie K. Lundquist, Justin Sharp, Garrett Wedam, James M. Wilczak, and Larry K. Berg
Wind Energ. Sci., 6, 45–60, https://doi.org/10.5194/wes-6-45-2021, https://doi.org/10.5194/wes-6-45-2021, 2021
Short summary
Short summary
Mountain waves can create oscillations in low-level wind speeds and subsequently in the power output of wind plants. We document such oscillations by analyzing sodar and lidar observations, nacelle wind speeds, power observations, and Weather Research and Forecasting model simulations. This research describes how mountain waves form in the Columbia River basin and affect wind energy production and their impact on operational forecasting, wind plant layout, and integration of power into the grid.
Huilin Huang, Yongkang Xue, Fang Li, and Ye Liu
Geosci. Model Dev., 13, 6029–6050, https://doi.org/10.5194/gmd-13-6029-2020, https://doi.org/10.5194/gmd-13-6029-2020, 2020
Short summary
Short summary
We developed a fire-coupled dynamic vegetation model that captures the spatial distribution, temporal variability, and especially the seasonal variability of fire regimes. The fire model is applied to assess the long-term fire impact on ecosystems and surface energy. We find that fire is an important determinant of the structure and function of the tropical savanna. By changing the vegetation composition and ecosystem characteristics, fire significantly alters surface energy balance.
Erin A. Riley, Jessica M. Kleiss, Laura D. Riihimaki, Charles N. Long, Larry K. Berg, and Evgueni Kassianov
Atmos. Meas. Tech., 13, 2099–2117, https://doi.org/10.5194/amt-13-2099-2020, https://doi.org/10.5194/amt-13-2099-2020, 2020
Short summary
Short summary
Discrepancies in hourly shallow cumuli cover estimates can be substantial. Instrument detection differences contribute to long-term bias in shallow cumuli cover estimates, whereas narrow field-of-view configurations impact measurement uncertainty as averaging time decreases. A new tool is introduced to visually assess both impacts on sub-hourly cloud cover estimates. Accurate shallow cumuli cover estimation is needed for model–observation comparisons and studying cloud-surface interactions.
Yufei Zou, Yuhang Wang, Yun Qian, Hanqin Tian, Jia Yang, and Ernesto Alvarado
Atmos. Chem. Phys., 20, 995–1020, https://doi.org/10.5194/acp-20-995-2020, https://doi.org/10.5194/acp-20-995-2020, 2020
Short summary
Short summary
Fire is a natural phenomenon that has a long history of interactions with the environment and human activity. The complex interactions were less represented in previous fire and climate models. Here we use a new global fire model with improved modeling capability to study how fire responds and contributes to climate change. The modeling results show increased global fire activity in the future driven by climate change, which in turn modulates local and remote climate and ecosystems.
Laura Bianco, Irina V. Djalalova, James M. Wilczak, Joseph B. Olson, Jaymes S. Kenyon, Aditya Choukulkar, Larry K. Berg, Harindra J. S. Fernando, Eric P. Grimit, Raghavendra Krishnamurthy, Julie K. Lundquist, Paytsar Muradyan, Mikhail Pekour, Yelena Pichugina, Mark T. Stoelinga, and David D. Turner
Geosci. Model Dev., 12, 4803–4821, https://doi.org/10.5194/gmd-12-4803-2019, https://doi.org/10.5194/gmd-12-4803-2019, 2019
Short summary
Short summary
During the second Wind Forecast Improvement Project, improvements to the parameterizations were applied to the High Resolution Rapid Refresh model and its nested version. The impacts of the new parameterizations on the forecast of 80 m wind speeds and power are assessed, using sodars and profiling lidars observations for comparison. Improvements are evaluated as a function of the model’s initialization time, forecast horizon, time of the day, season, site elevation, and meteorological phenomena.
Zhiyuan Hu, Jianping Huang, Chun Zhao, Yuanyuan Ma, Qinjian Jin, Yun Qian, L. Ruby Leung, Jianrong Bi, and Jianmin Ma
Atmos. Chem. Phys., 19, 12709–12730, https://doi.org/10.5194/acp-19-12709-2019, https://doi.org/10.5194/acp-19-12709-2019, 2019
Short summary
Short summary
This study investigates aerosol chemical compositions and relative contributions to total aerosols in the western US. The results show that trans-Pacific aerosols have a maximum concentration in the boreal spring, with the greatest contribution from dust. Over western North America, the trans-Pacific aerosols dominate the column-integrated aerosol mass and number concentration. However, near the surface, aerosols mainly originated from local emissions.
Stefan Rahimi, Xiaohong Liu, Chenglai Wu, William K. Lau, Hunter Brown, Mingxuan Wu, and Yun Qian
Atmos. Chem. Phys., 19, 12025–12049, https://doi.org/10.5194/acp-19-12025-2019, https://doi.org/10.5194/acp-19-12025-2019, 2019
Short summary
Short summary
Light-absorbing particles impact the Earth system in a variety of ways. They can warm the atmosphere by their very presence, or they can warm the atmosphere after they deposit on snow, warm it, and warm the overlying atmosphere. This paper focuses on these two processes as they pertain to black carbon and dust's impacts on the South Asian monsoon. It will be shown that these two aerosols have a significant effect on the monsoon.
Chandan Sarangi, Yun Qian, Karl Rittger, Kathryn J. Bormann, Ying Liu, Hailong Wang, Hui Wan, Guangxing Lin, and Thomas H. Painter
Atmos. Chem. Phys., 19, 7105–7128, https://doi.org/10.5194/acp-19-7105-2019, https://doi.org/10.5194/acp-19-7105-2019, 2019
Short summary
Short summary
Radiative forcing induced by deposition of light-absorbing particles (LAPs) on snow is an important surface forcing. Here, we have used high-resolution WRF-Chem (coupled with online snow–LAP–radiation model) simulations for 2013–2014 to estimate the spatial variation in LAP-induced snow albedo darkening effect in high-mountain Asia. Significant improvement in simulated LAP–snow properties with use of a higher spatial resolution for the same model configuration is illustrated over this region.
Nicola Bodini, Julie K. Lundquist, Raghavendra Krishnamurthy, Mikhail Pekour, Larry K. Berg, and Aditya Choukulkar
Atmos. Chem. Phys., 19, 4367–4382, https://doi.org/10.5194/acp-19-4367-2019, https://doi.org/10.5194/acp-19-4367-2019, 2019
Short summary
Short summary
To improve the parameterization of the turbulence dissipation rate (ε) in numerical weather prediction models, we have assessed its temporal and spatial variability at various scales in the Columbia River Gorge during the WFIP2 field experiment. The turbulence dissipation rate shows large spatial variability, even at the microscale, with larger values in sites located downwind of complex orographic structures or in wind farm wakes. Distinct diurnal and seasonal cycles in ε have also been found.
Ye Liu, Yongkang Xue, Glen MacDonald, Peter Cox, and Zhengqiu Zhang
Earth Syst. Dynam., 10, 9–29, https://doi.org/10.5194/esd-10-9-2019, https://doi.org/10.5194/esd-10-9-2019, 2019
Short summary
Short summary
Climate regime shift during the 1980s identified by abrupt change in temperature, precipitation, etc. had a substantial impact on the ecosystem at different scales. Our paper identifies the spatial and temporal characteristics of the effects of climate variability, global warming, and eCO2 on ecosystem trends before and after the shift. We found about 15 % (20 %) of the global land area had enhanced positive trend (trend sign reversed) during the 1980s due to climate regime shift.
Jiahui Zhang, Dao-Yi Gong, Rui Mao, Jing Yang, Ziyin Zhang, and Yun Qian
Atmos. Chem. Phys., 18, 16775–16791, https://doi.org/10.5194/acp-18-16775-2018, https://doi.org/10.5194/acp-18-16775-2018, 2018
Short summary
Short summary
The Chinese Spring Festival (also known as the Chinese New Year or Lunar New Year) is the most important festival in China. This paper reports that during the Chinese Spring Festival, the precipitation over southern China has been significantly reduced. The precipitation reduction is due to anomalous northerly winds. We suppose that anomalous atmospheric circulation is likely related to the human activity during holidays. It is an interesting phenomenon.
Jeffrey D. Mirocha, Matthew J. Churchfield, Domingo Muñoz-Esparza, Raj K. Rai, Yan Feng, Branko Kosović, Sue Ellen Haupt, Barbara Brown, Brandon L. Ennis, Caroline Draxl, Javier Sanz Rodrigo, William J. Shaw, Larry K. Berg, Patrick J. Moriarty, Rodman R. Linn, Veerabhadra R. Kotamarthi, Ramesh Balakrishnan, Joel W. Cline, Michael C. Robinson, and Shreyas Ananthan
Wind Energ. Sci., 3, 589–613, https://doi.org/10.5194/wes-3-589-2018, https://doi.org/10.5194/wes-3-589-2018, 2018
Short summary
Short summary
This paper validates the use of idealized large-eddy simulations with periodic lateral boundary conditions to provide boundary-layer flow quantities of interest for wind energy applications. Sensitivities to model formulation, forcing parameter values, and grid configurations were also examined, both to ascertain the robustness of the technique and to characterize inherent uncertainties, as required for the evaluation of more general wind plant flow simulation approaches under development.
Cenlin He, Mark G. Flanner, Fei Chen, Michael Barlage, Kuo-Nan Liou, Shichang Kang, Jing Ming, and Yun Qian
Atmos. Chem. Phys., 18, 11507–11527, https://doi.org/10.5194/acp-18-11507-2018, https://doi.org/10.5194/acp-18-11507-2018, 2018
Short summary
Short summary
Snow albedo plays a key role in the Earth and climate system. It can be affected by impurities and snow properties. This study implements new parameterizations into a widely used snow model to account for effects of snow shape and black carbon–snow mixing state on snow albedo reduction in the Tibetan Plateau. This study points toward an imperative need for extensive measurements and improved model characterization of snow grain shape and aerosol–snow mixing state in Tibet and elsewhere.
Kai Zhang, Philip J. Rasch, Mark A. Taylor, Hui Wan, Ruby Leung, Po-Lun Ma, Jean-Christophe Golaz, Jon Wolfe, Wuyin Lin, Balwinder Singh, Susannah Burrows, Jin-Ho Yoon, Hailong Wang, Yun Qian, Qi Tang, Peter Caldwell, and Shaocheng Xie
Geosci. Model Dev., 11, 1971–1988, https://doi.org/10.5194/gmd-11-1971-2018, https://doi.org/10.5194/gmd-11-1971-2018, 2018
Short summary
Short summary
The conservation of total water is an important numerical feature for global Earth system models. Even small conservation problems in the water budget can lead to systematic errors in century-long simulations for sea level rise projection. This study quantifies and reduces various sources of water conservation error in the atmosphere component of the Energy Exascale Earth System Model.
Hewen Niu, Shichang Kang, Hailong Wang, Rudong Zhang, Xixi Lu, Yun Qian, Rukumesh Paudyal, Shijin Wang, Xiaofei Shi, and Xingguo Yan
Atmos. Chem. Phys., 18, 6441–6460, https://doi.org/10.5194/acp-18-6441-2018, https://doi.org/10.5194/acp-18-6441-2018, 2018
Short summary
Short summary
Deposition of light-absorbing carbonaceous aerosol on the surface of glaciers can greatly alter the energy fluxes of glaciers. Two years of continuous observations of carbonaceous aerosols in a glacierized region are analyzed. We mainly studied the light absorption properties of carbonaceous aerosol and have employed a global aerosol–climate model to estimate source attributions of atmospheric black carbon.
Longtao Wu, Yu Gu, Jonathan H. Jiang, Hui Su, Nanpeng Yu, Chun Zhao, Yun Qian, Bin Zhao, Kuo-Nan Liou, and Yong-Sang Choi
Atmos. Chem. Phys., 18, 5529–5547, https://doi.org/10.5194/acp-18-5529-2018, https://doi.org/10.5194/acp-18-5529-2018, 2018
Yawen Liu, Kai Zhang, Yun Qian, Yuhang Wang, Yufei Zou, Yongjia Song, Hui Wan, Xiaohong Liu, and Xiu-Qun Yang
Atmos. Chem. Phys., 18, 31–47, https://doi.org/10.5194/acp-18-31-2018, https://doi.org/10.5194/acp-18-31-2018, 2018
Short summary
Short summary
Fire aerosols have large impact on weather and climate through their effect on clouds and radiation, but it is difficult to quantify. Here we investigated the short-term effective radiative forcing of fire aerosols using the nudged hindcast ensemble simulations from global aerosol-climate model. Results show large effects of fire aerosols on both liquid and ice cloud and large ensemble spread of regional mean shortwave cloud radiative forcing over southern Mexico and the central US.
Louis Marelle, Jean-Christophe Raut, Kathy S. Law, Larry K. Berg, Jerome D. Fast, Richard C. Easter, Manish Shrivastava, and Jennie L. Thomas
Geosci. Model Dev., 10, 3661–3677, https://doi.org/10.5194/gmd-10-3661-2017, https://doi.org/10.5194/gmd-10-3661-2017, 2017
Short summary
Short summary
We develop the WRF-Chem 3.5.1 model to improve simulations of aerosols and ozone in the Arctic. Both species are important air pollutants and climate forcers, but models often struggle to reproduce observations in the Arctic. Our developments concern pollutant emissions, mixing, chemistry, and removal, including processes related to snow and sea ice. The effect of these changes are quantitatively validated against observations, showing significant improvements compared to the original model.
Jean-Christophe Raut, Louis Marelle, Jerome D. Fast, Jennie L. Thomas, Bernadett Weinzierl, Katharine S. Law, Larry K. Berg, Anke Roiger, Richard C. Easter, Katharina Heimerl, Tatsuo Onishi, Julien Delanoë, and Hans Schlager
Atmos. Chem. Phys., 17, 10969–10995, https://doi.org/10.5194/acp-17-10969-2017, https://doi.org/10.5194/acp-17-10969-2017, 2017
Short summary
Short summary
We study the cross-polar transport of plumes from Siberian fires to the Arctic in summer, both in terms of transport pathways and efficiency of deposition processes. Those plumes containing soot may originate from anthropogenic and biomass burning sources in mid-latitude regions and may impact the Arctic climate by depositing on snow and ice surfaces. We evaluate the role of the respective source contributions, investigate the transport of plumes and treat pathway-dependent removal of particles.
Yang Yang, Hailong Wang, Steven J. Smith, Richard Easter, Po-Lun Ma, Yun Qian, Hongbin Yu, Can Li, and Philip J. Rasch
Atmos. Chem. Phys., 17, 8903–8922, https://doi.org/10.5194/acp-17-8903-2017, https://doi.org/10.5194/acp-17-8903-2017, 2017
Short summary
Short summary
Sulfate has significant impacts on air quality and climate. Local sulfate pollution could result from remote influences, making domestic mitigation efforts inefficient. Using CESM with a sulfur source-tagging technique, we found that, over regions with relatively low emissions, sulfate concentrations are primarily attributed to non-local sources and sulfate indirect radiative forcing over the Southern Hemisphere is more sensitive to emission perturbation than the polluted Northern Hemisphere.
Shi Zhong, Yun Qian, Chun Zhao, Ruby Leung, Hailong Wang, Ben Yang, Jiwen Fan, Huiping Yan, Xiu-Qun Yang, and Dongqing Liu
Atmos. Chem. Phys., 17, 5439–5457, https://doi.org/10.5194/acp-17-5439-2017, https://doi.org/10.5194/acp-17-5439-2017, 2017
Short summary
Short summary
An online climate–chemistry coupled model (WRF-Chem) is integrated for 5 years at cloud-permitting scale to quantify the impacts of urbanization-induced changes in land cover and pollutants emission on regional climate in the Yangtze River Delta region in eastern China. Urbanization over this region increases the frequency of extreme precipitation and heat wave in summer. The results could help China government in making policies in mitigating the environmental impact of urbanization.
Xueqian Wang, Weidong Guo, Bo Qiu, Ye Liu, Jianning Sun, and Aijun Ding
Atmos. Chem. Phys., 17, 4989–4996, https://doi.org/10.5194/acp-17-4989-2017, https://doi.org/10.5194/acp-17-4989-2017, 2017
Short summary
Short summary
Land use or cover change is a fundamental anthropogenic forcing for climate change. Based on field observations, we quantified the contributions of different factors to surface temperature change and deepened the understanding of its mechanisms. We found evaporative cooling plays the most important role in the temperature change, while radiative forcing, which is traditionally emphasized, is not significant. This study provided firsthand evidence to verify the model results in IPCC AR5.
Yiquan Jiang, Zheng Lu, Xiaohong Liu, Yun Qian, Kai Zhang, Yuhang Wang, and Xiu-Qun Yang
Atmos. Chem. Phys., 16, 14805–14824, https://doi.org/10.5194/acp-16-14805-2016, https://doi.org/10.5194/acp-16-14805-2016, 2016
Short summary
Short summary
Aerosols from open fires could significantly perturb the global radiation balance and induce climate change. In this study, the CAM5 global climate model is used to investigate the spatial and seasonal characteristics of radiative effects due to fire aerosol–radiation interactions, fire aerosol-cloud interactions and fire aerosol-surface albedo interactions, including radiative effects from all fire aerosols, fire black carbon and fire particulate organic matter.
Tianjun Zhou, Andrew G. Turner, James L. Kinter, Bin Wang, Yun Qian, Xiaolong Chen, Bo Wu, Bin Wang, Bo Liu, Liwei Zou, and Bian He
Geosci. Model Dev., 9, 3589–3604, https://doi.org/10.5194/gmd-9-3589-2016, https://doi.org/10.5194/gmd-9-3589-2016, 2016
Short summary
Short summary
This paper tells why to launch the Global Monsoons Model Inter-comparison Project (GMMIP) and how to achieve its scientific goals on monsoon variability. It addresses the scientific questions to be answered, describes three tiered experiments comprehensively and proposes a basic analysis framework to guide future research. It will help the monsoon research communities to understand the objectives of the GMMIP and the modelling groups involved in the GMMIP conduct the experiments successfully.
Ivan Ortega, Sean Coburn, Larry K. Berg, Kathy Lantz, Joseph Michalsky, Richard A. Ferrare, Johnathan W. Hair, Chris A. Hostetler, and Rainer Volkamer
Atmos. Meas. Tech., 9, 3893–3910, https://doi.org/10.5194/amt-9-3893-2016, https://doi.org/10.5194/amt-9-3893-2016, 2016
Short summary
Short summary
We present an inherently calibrated retrieval to measure aerosol optical depth (AOD) and the aerosol phase function parameter, g, based on measurements of azimuth distributions of the Raman scattering probability (RSP), the near-absolute rotational Raman scattering (RRS) intensity by the University of Colorado two-dimensional (2-D) MAX-DOAS. The retrievals are maximally sensitive at low AOD and do not require absolute radiance calibration. We compare results with data from independent sensors.
Chun Zhao, Maoyi Huang, Jerome D. Fast, Larry K. Berg, Yun Qian, Alex Guenther, Dasa Gu, Manish Shrivastava, Ying Liu, Stacy Walters, Gabriele Pfister, Jiming Jin, John E. Shilling, and Carsten Warneke
Geosci. Model Dev., 9, 1959–1976, https://doi.org/10.5194/gmd-9-1959-2016, https://doi.org/10.5194/gmd-9-1959-2016, 2016
Short summary
Short summary
In this study, the latest version of MEGAN is coupled within CLM4 in WRF-Chem. In this implementation, MEGAN shares a consistent vegetation map with CLM4. This improved modeling framework is used to investigate the impact of two land surface schemes on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models.
Zhiyuan Hu, Chun Zhao, Jianping Huang, L. Ruby Leung, Yun Qian, Hongbin Yu, Lei Huang, and Olga V. Kalashnikova
Geosci. Model Dev., 9, 1725–1746, https://doi.org/10.5194/gmd-9-1725-2016, https://doi.org/10.5194/gmd-9-1725-2016, 2016
Short summary
Short summary
This study conducts the simulation of WRF-Chem with the quasi-global configuration for 2010–2014, and evaluates the simulation with multiple observation datasets for the first time. This study demonstrates that the WRF-Chem quasi-global simulation can be used for investigating trans-Pacific transport of aerosols and providing reasonable inflow chemical boundaries for the western USA to further understand the impact of transported pollutants on the regional air quality and climate.
Kai Zhang, Chun Zhao, Hui Wan, Yun Qian, Richard C. Easter, Steven J. Ghan, Koichi Sakaguchi, and Xiaohong Liu
Geosci. Model Dev., 9, 607–632, https://doi.org/10.5194/gmd-9-607-2016, https://doi.org/10.5194/gmd-9-607-2016, 2016
Short summary
Short summary
A sub-grid treatment based on Weibull distribution is introduced to CAM5 to take into account the impact of unresolved variability of surface wind speed on sea salt and dust emissions. Simulations show that sub-grid wind variability has relatively small impacts on the global mean sea salt emissions, but considerable influence on dust emissions. Dry convective eddies and mesoscale flows associated with complex topography are the major causes of dust emission enhancement.
R. Zhang, H. Wang, D. A. Hegg, Y. Qian, S. J. Doherty, C. Dang, P.-L. Ma, P. J. Rasch, and Q. Fu
Atmos. Chem. Phys., 15, 12805–12822, https://doi.org/10.5194/acp-15-12805-2015, https://doi.org/10.5194/acp-15-12805-2015, 2015
Short summary
Short summary
We use a global climate model with an explicit source tagging technique to quantify contributions of emissions from various geographical regions and sectors to BC in North America. Model results are evaluated against measurements of near-surface and in-snow BC. We found strong spatial variations of BC and its radiative forcing that can be quantitatively attributed to the various source origins, and also identified a significant source of BC in snow that is likely missing in most climate models.
R. Zhang, H. Wang, Y. Qian, P. J. Rasch, R. C. Easter, P.-L. Ma, B. Singh, J. Huang, and Q. Fu
Atmos. Chem. Phys., 15, 6205–6223, https://doi.org/10.5194/acp-15-6205-2015, https://doi.org/10.5194/acp-15-6205-2015, 2015
Short summary
Short summary
We use the CAM5 model with a novel source-tagging technique to characterize the fate of BC particles emitted from various geographical regions and sectors and their transport pathways to the Himalayas and Tibetan Plateau (HTP). We show a comprehensive picture of the seasonal and regional dependence of BC source attributions, and find strong seasonal and spatial variations in BC-in-snow radiative forcing in the HTP that can be quantitatively attributed to the various regional/sectoral sources.
L. K. Berg, M. Shrivastava, R. C. Easter, J. D. Fast, E. G. Chapman, Y. Liu, and R. A. Ferrare
Geosci. Model Dev., 8, 409–429, https://doi.org/10.5194/gmd-8-409-2015, https://doi.org/10.5194/gmd-8-409-2015, 2015
Short summary
Short summary
This work presents a new methodology for representing regional-scale impacts of cloud processing on both aerosol and trace gases in sub-grid-scale convective clouds. Using the new methodology, we can better simulate the aerosol lifecycle over large areas. The results presented in this work highlight the potential change in column-integrated amounts of black carbon, organic aerosol, and sulfate aerosol, which were found to range from -50% for black carbon to +40% for sulfate.
M. Wang, B. Xu, J. Cao, X. Tie, H. Wang, R. Zhang, Y. Qian, P. J. Rasch, S. Zhao, G. Wu, H. Zhao, D. R. Joswiak, J. Li, and Y. Xie
Atmos. Chem. Phys., 15, 1191–1204, https://doi.org/10.5194/acp-15-1191-2015, https://doi.org/10.5194/acp-15-1191-2015, 2015
Short summary
Short summary
Carbonaceous aerosols recorded in a Tibetan glacier present a distinct seasonal dependence and an increasing trend after 1980, which has important implications for the accelerated glacier melting. We use a global aerosol--climate model to quantify the aerosol source--receptor relationships, showing that emissions in South Asia had the largest contribution. The emission inventories and historical fuel consumption in South Asia are consistent with our ice-core analysis and model results.
C. Zhao, Z. Hu, Y. Qian, L. Ruby Leung, J. Huang, M. Huang, J. Jin, M. G. Flanner, R. Zhang, H. Wang, H. Yan, Z. Lu, and D. G. Streets
Atmos. Chem. Phys., 14, 11475–11491, https://doi.org/10.5194/acp-14-11475-2014, https://doi.org/10.5194/acp-14-11475-2014, 2014
D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid
Atmos. Meas. Tech., 7, 3487–3496, https://doi.org/10.5194/amt-7-3487-2014, https://doi.org/10.5194/amt-7-3487-2014, 2014
E. Kassianov, J. Barnard, M. Pekour, L. K. Berg, J. Shilling, C. Flynn, F. Mei, and A. Jefferson
Atmos. Meas. Tech., 7, 3247–3261, https://doi.org/10.5194/amt-7-3247-2014, https://doi.org/10.5194/amt-7-3247-2014, 2014
H. Wan, P. J. Rasch, K. Zhang, Y. Qian, H. Yan, and C. Zhao
Geosci. Model Dev., 7, 1961–1977, https://doi.org/10.5194/gmd-7-1961-2014, https://doi.org/10.5194/gmd-7-1961-2014, 2014
A. J. Scarino, M. D. Obland, J. D. Fast, S. P. Burton, R. A. Ferrare, C. A. Hostetler, L. K. Berg, B. Lefer, C. Haman, J. W. Hair, R. R. Rogers, C. Butler, A. L. Cook, and D. B. Harper
Atmos. Chem. Phys., 14, 5547–5560, https://doi.org/10.5194/acp-14-5547-2014, https://doi.org/10.5194/acp-14-5547-2014, 2014
C. Zhao, X. Liu, Y. Qian, J. Yoon, Z. Hou, G. Lin, S. McFarlane, H. Wang, B. Yang, P.-L. Ma, H. Yan, and J. Bao
Atmos. Chem. Phys., 13, 10969–10987, https://doi.org/10.5194/acp-13-10969-2013, https://doi.org/10.5194/acp-13-10969-2013, 2013
C. Zhao, S. Chen, L. R. Leung, Y. Qian, J. F. Kok, R. A. Zaveri, and J. Huang
Atmos. Chem. Phys., 13, 10733–10753, https://doi.org/10.5194/acp-13-10733-2013, https://doi.org/10.5194/acp-13-10733-2013, 2013
H. Wang, R. C. Easter, P. J. Rasch, M. Wang, X. Liu, S. J. Ghan, Y. Qian, J.-H. Yoon, P.-L. Ma, and V. Vinoj
Geosci. Model Dev., 6, 765–782, https://doi.org/10.5194/gmd-6-765-2013, https://doi.org/10.5194/gmd-6-765-2013, 2013
Related subject area
Design methods, reliability and uncertainty modelling
Effectively using multifidelity optimization for wind turbine design
Efficient Bayesian calibration of aerodynamic wind turbine models using surrogate modeling
Fast yaw optimization for wind plant wake steering using Boolean yaw angles
A simplified, efficient approach to hybrid wind and solar plant site optimization
Influence of wind turbine design parameters on linearized physics-based models in OpenFAST
Input torque measurements for wind turbine gearboxes using fiber-optic strain sensors
A model to calculate fatigue damage caused by partial waking during wind farm optimization
A fully integrated optimization framework for designing a complex geometry offshore wind turbine spar-type floating support structure
Land-based wind turbines with flexible rail-transportable blades – Part 2: 3D finite element design optimization of the rotor blades
Evaluation of the impact of active wake control techniques on ultimate loads for a 10 MW wind turbine
Assessing boundary condition and parametric uncertainty in numerical-weather-prediction-modeled, long-term offshore wind speed through machine learning and analog ensemble
What are the benefits of lidar-assisted control in the design of a wind turbine?
Design procedures and experimental verification of an electro-thermal deicing system for wind turbines
Land-based wind turbines with flexible rail-transportable blades – Part 1: Conceptual design and aeroservoelastic performance
Objective and algorithm considerations when optimizing the number and placement of turbines in a wind power plant
Aeroelastic loads on a 10 MW turbine exposed to extreme events selected from a year-long large-eddy simulation over the North Sea
Optimal scheduling of the next preventive maintenance activity for a wind farm
A method for preliminary rotor design – Part 1: Radially Independent Actuator Disc model
A method for preliminary rotor design – Part 2: Wind turbine Optimization with Radial Independence
Wind farm layout optimization using pseudo-gradients
On the scaling of wind turbine rotors
Reducing cost uncertainty in the drivetrain design decision with a focus on the operational phase
Feature selection techniques for modelling tower fatigue loads of a wind turbine with neural networks
Wind tunnel comparison of four VAWT configurations to test load-limiting concept and CFD validation
Redesign of an upwind rotor for a downwind configuration: design changes and cost evaluation
Fatigue lifetime calculation of wind turbine blade bearings considering blade-dependent load distribution
Reliability analysis of offshore wind turbine foundations under lateral cyclic loading
Operational-based annual energy production uncertainty: are its components actually uncorrelated?
Change-point detection in wind turbine SCADA data for robust condition monitoring with normal behaviour models
Augmented Kalman filter with a reduced mechanical model to estimate tower loads on a land-based wind turbine: a step towards digital-twin simulations
A surrogate model approach for associating wind farm load variations with turbine failures
New strategies for optimized structural monitoring of wind farms: experimental campaign
Differences in damping of edgewise whirl modes operating an upwind turbine in a downwind configuration
Assessment of a rotor blade extension retrofit as a supplement to the lifetime extension of wind turbines
Is the Blade Element Momentum theory overestimating wind turbine loads? – An aeroelastic comparison between OpenFAST's AeroDyn and QBlade's Lifting-Line Free Vortex Wake method
Development and feasibility study of segment blade test methodology
Analytical model for the power–yaw sensitivity of wind turbines operating in full wake
Wake steering optimization under uncertainty
Radar-derived precipitation climatology for wind turbine blade leading edge erosion
WESgraph: a graph database for the wind farm domain
Reliability-based design optimization of offshore wind turbine support structures using analytical sensitivities and factorized uncertainty modeling
Optimal relationship between power and design-driving loads for wind turbine rotors using 1-D models
Digitalization of scanning lidar measurement campaign planning
Massive simplification of the wind farm layout optimization problem
System-level design studies for large rotors
Sensitivity analysis of the effect of wind characteristics and turbine properties on wind turbine loads
Performance of non-intrusive uncertainty quantification in the aeroservoelastic simulation of wind turbines
Polynomial chaos to efficiently compute the annual energy production in wind farm layout optimization
Multipoint high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind turbine
Comparison between upwind and downwind designs of a 10 MW wind turbine rotor
John Jasa, Pietro Bortolotti, Daniel Zalkind, and Garrett Barter
Wind Energ. Sci., 7, 991–1006, https://doi.org/10.5194/wes-7-991-2022, https://doi.org/10.5194/wes-7-991-2022, 2022
Short summary
Short summary
Using highly accurate simulations within a design cycle is prohibitively computationally expensive. We implement and present a multifidelity optimization method and showcase its efficacy using three different case studies. We examine aerodynamic blade design, turbine controls tuning, and a wind plant layout problem. In each case, the multifidelity method finds an optimal design that performs better than those obtained using simplified models but at a lower cost than high-fidelity optimization.
Benjamin Sanderse, Vinit V. Dighe, Koen Boorsma, and Gerard Schepers
Wind Energ. Sci., 7, 759–781, https://doi.org/10.5194/wes-7-759-2022, https://doi.org/10.5194/wes-7-759-2022, 2022
Short summary
Short summary
An accurate prediction of loads and power of an offshore wind turbine is needed for an optimal design. However, such predictions are typically performed with engineering models that contain many inaccuracies and uncertainties. In this paper we have proposed a systematic approach to quantify and calibrate these uncertainties based on two experimental datasets. The calibrated models are much closer to the experimental data and are equipped with an estimate of the uncertainty in the predictions.
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci., 7, 741–757, https://doi.org/10.5194/wes-7-741-2022, https://doi.org/10.5194/wes-7-741-2022, 2022
Short summary
Short summary
In wind plants, turbines can be yawed to steer their wakes away from downstream turbines and achieve an increase in plant power. The yaw angles become expensive to solve for in large farms. This paper presents a new method to solve for the optimal turbine yaw angles in a wind plant. The yaw angles are defined as Boolean variables – each turbine is either yawed or nonyawed. With this formulation, most of the gains from wake steering can be reached with a large reduction in computational expense.
Charles Tripp, Darice Guittet, Jennifer King, and Aaron Barker
Wind Energ. Sci., 7, 697–713, https://doi.org/10.5194/wes-7-697-2022, https://doi.org/10.5194/wes-7-697-2022, 2022
Short summary
Short summary
Hybrid solar and wind plant layout optimization is a difficult, complex problem. In this paper, we propose a parameterized approach to wind and solar hybrid power plant layout optimization that greatly reduces problem dimensionality while guaranteeing that the generated layouts have a desirable regular structure. We demonstrate that this layout method that generates high-performance, regular layouts which respect hard constraints (e.g., placement restrictions).
Jason M. Jonkman, Emmanuel S. P. Branlard, and John P. Jasa
Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022, https://doi.org/10.5194/wes-7-559-2022, 2022
Short summary
Short summary
This paper summarizes efforts done to understand the impact of design parameter variations in the physical system (e.g., mass, stiffness, geometry, aerodynamic, and hydrodynamic coefficients) on the linearized system using OpenFAST in support of the development of the WEIS toolset to enable controls co-design of floating offshore wind turbines.
Unai Gutierrez Santiago, Alfredo Fernández Sisón, Henk Polinder, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 505–521, https://doi.org/10.5194/wes-7-505-2022, https://doi.org/10.5194/wes-7-505-2022, 2022
Short summary
Short summary
The gearbox is one of the main contributors to the overall cost of wind energy, and it is acknowledged that we still do not fully understand its loading. The study presented in this paper develops a new alternative method to measure input rotor torque in wind turbine gearboxes, overcoming the drawbacks related to measuring on a rotating shaft. The method presented in this paper could make measuring gearbox torque more cost-effective, which would facilitate its adoption in serial wind turbines.
Andrew P. J. Stanley, Jennifer King, Christopher Bay, and Andrew Ning
Wind Energ. Sci., 7, 433–454, https://doi.org/10.5194/wes-7-433-2022, https://doi.org/10.5194/wes-7-433-2022, 2022
Short summary
Short summary
In this paper, we present a computationally inexpensive model to calculate wind turbine blade fatigue caused by waking and partial waking. The model accounts for steady state on the blade, as well as wind turbulence. The model is fast enough to be used in wind farm layout optimization, which has not been possible with more expensive fatigue models in the past. The methods introduced in this paper will allow for farms with increased energy production that maintain turbine structural reliability.
Mareike Leimeister, Maurizio Collu, and Athanasios Kolios
Wind Energ. Sci., 7, 259–281, https://doi.org/10.5194/wes-7-259-2022, https://doi.org/10.5194/wes-7-259-2022, 2022
Short summary
Short summary
Floating offshore wind technology has high potential but still faces challenges for gaining economic competitiveness to allow commercial market uptake. Hence, design optimization plays a key role; however, the final optimum floater obtained highly depends on the specified optimization problem. Thus, by considering alternative structural realization approaches, not very stringent limitations on the structure and dimensions are required. This way, more innovative floater designs can be captured.
Ernesto Camarena, Evan Anderson, Josh Paquette, Pietro Bortolotti, Roland Feil, and Nick Johnson
Wind Energ. Sci., 7, 19–35, https://doi.org/10.5194/wes-7-19-2022, https://doi.org/10.5194/wes-7-19-2022, 2022
Short summary
Short summary
The length of rotor blades of land-based wind turbines is currently constrained by logistics. Turbine manufacturers currently propose segmented solutions to overcome these limits, but blade joints come with extra masses and costs. This work investigates an alternative solution, namely the design of ultra-flexible blades that can be transported on rail via controlled bending. The results show that this is a promising pathway to further increasing the size of land-based wind turbines.
Alessandro Croce, Stefano Cacciola, and Luca Sartori
Wind Energ. Sci., 7, 1–17, https://doi.org/10.5194/wes-7-1-2022, https://doi.org/10.5194/wes-7-1-2022, 2022
Short summary
Short summary
In recent years, research has focused on the development of wind farm controllers with the aim of minimizing interactions between machines and thus improving the production of the wind farm.
In this work we have analyzed the effects of these recent technologies on a single wind turbine, with the aim of understanding the impact of these controllers on the design of the machine itself.
The analyses have shown there are non-negligible effects on some components of the wind turbine.
Nicola Bodini, Weiming Hu, Mike Optis, Guido Cervone, and Stefano Alessandrini
Wind Energ. Sci., 6, 1363–1377, https://doi.org/10.5194/wes-6-1363-2021, https://doi.org/10.5194/wes-6-1363-2021, 2021
Short summary
Short summary
We develop two machine-learning-based approaches to temporally extrapolate uncertainty in hub-height wind speed modeled by a numerical weather prediction model. We test our approaches in the California Outer Continental Shelf, where a significant offshore wind energy development is currently being planned, and we find that both provide accurate results.
Helena Canet, Stefan Loew, and Carlo L. Bottasso
Wind Energ. Sci., 6, 1325–1340, https://doi.org/10.5194/wes-6-1325-2021, https://doi.org/10.5194/wes-6-1325-2021, 2021
Short summary
Short summary
Lidar-assisted control (LAC) is used to redesign the rotor and tower of three turbines, differing in terms of wind class, size, and power rating. The load reductions enabled by LAC are used to save
mass, increase hub height, or extend lifetime. The first two strategies yield reductions in the cost of energy only for the tower of the largest machine, while more interesting benefits are obtained for lifetime extension.
David Getz and Jose Palacios
Wind Energ. Sci., 6, 1291–1309, https://doi.org/10.5194/wes-6-1291-2021, https://doi.org/10.5194/wes-6-1291-2021, 2021
Short summary
Short summary
A methodology to design electrothermal deicing protection for wind turbines is presented. The method relies on modeling and experimental testing to determine the critical ice thickness. The critical ice thickness needed is dependent on the ice tensile strength, which varies with icing conditions. The ice tensile strength must be overcome by the stress that a de-bonded ice structure exerts under centrifugal force at its root region, where it attaches to a non-de-bonded ice region.
Pietro Bortolotti, Nick Johnson, Nikhar J. Abbas, Evan Anderson, Ernesto Camarena, and Joshua Paquette
Wind Energ. Sci., 6, 1277–1290, https://doi.org/10.5194/wes-6-1277-2021, https://doi.org/10.5194/wes-6-1277-2021, 2021
Short summary
Short summary
The length of rotor blades of land-based wind turbines is currently constrained by logistics. Turbine manufacturers currently propose segmented solutions to overcome these limits, but blade joints come with extra masses and costs. This work investigates an alternative solution, namely the design of ultra-flexible blades that can be transported on rail via controlled bending. The results show that this is a promising pathway for further increasing the size of land-based wind turbines.
Andrew P. J. Stanley, Owen Roberts, Jennifer King, and Christopher J. Bay
Wind Energ. Sci., 6, 1143–1167, https://doi.org/10.5194/wes-6-1143-2021, https://doi.org/10.5194/wes-6-1143-2021, 2021
Short summary
Short summary
Wind farm layout optimization is an essential part of wind farm design. In this paper, we present different methods to determine the number of turbines in a wind farm, as well as their placement. Also in this paper we explore the effect that the objective function has on the wind farm design and found that wind farm layout is highly sensitive to the objective. The optimal number of turbines can vary greatly, from 15 to 54 for the cases in this paper, depending on the metric that is optimized.
Gerard Schepers, Pim van Dorp, Remco Verzijlbergh, Peter Baas, and Harmen Jonker
Wind Energ. Sci., 6, 983–996, https://doi.org/10.5194/wes-6-983-2021, https://doi.org/10.5194/wes-6-983-2021, 2021
Short summary
Short summary
In this article the aeroelastic loads on a 10 MW turbine in response to unconventional wind conditions selected from a year-long large-eddy simulation on a site at the North Sea are evaluated. Thereto an assessment is made of the practical importance of these wind conditions within an aeroelastic context based on high-fidelity wind modelling. Moreover the accuracy of BEM-based methods for modelling such wind conditions is assessed.
Quanjiang Yu, Michael Patriksson, and Serik Sagitov
Wind Energ. Sci., 6, 949–959, https://doi.org/10.5194/wes-6-949-2021, https://doi.org/10.5194/wes-6-949-2021, 2021
Short summary
Short summary
There are two ways to maintain a multi-component system: corrective maintenance, when a broken component is replaced with a new one, and preventive maintenance (PM), when some components are replaced in a planned manner before they break down. This article proposes a mathematical model for finding an optimal time to perform the next PM activity and selecting the components which should be replaced. The model is fast to solve, and it can be used as a key module in a maintenance scheduling app.
Kenneth Loenbaek, Christian Bak, Jens I. Madsen, and Michael McWilliam
Wind Energ. Sci., 6, 903–915, https://doi.org/10.5194/wes-6-903-2021, https://doi.org/10.5194/wes-6-903-2021, 2021
Short summary
Short summary
We present a model for assessing the aerodynamic performance of a wind turbine rotor through a different parametrization of the classical blade element momentum model. The model establishes an analytical relationship between the loading in the flow direction and the power along the rotor span. The main benefit of the model is the ease with which it can be applied for rotor optimization and especially load constraint power optimization.
Kenneth Loenbaek, Christian Bak, and Michael McWilliam
Wind Energ. Sci., 6, 917–933, https://doi.org/10.5194/wes-6-917-2021, https://doi.org/10.5194/wes-6-917-2021, 2021
Short summary
Short summary
A novel wind turbine rotor optimization methodology is presented. Using an assumption of radial independence it is possible to obtain the Pareto-optimal relationship between power and loads through the use of KKT multipliers, leaving an optimization problem that can be solved at each radial station independently. Combining it with a simple cost function it is possible to analytically solve for the optimal power per cost with given inputs for the aerodynamics and the cost function.
Erik Quaeghebeur, René Bos, and Michiel B. Zaaijer
Wind Energ. Sci., 6, 815–839, https://doi.org/10.5194/wes-6-815-2021, https://doi.org/10.5194/wes-6-815-2021, 2021
Short summary
Short summary
We present a technique to support the optimal layout (placement) of wind turbines in a wind farm. It efficiently determines good directions and distances for moving turbines. An improved layout reduces production losses and so makes the farm project economically more attractive. Compared to most existing techniques, our approach requires less time. This allows wind farm designers to explore more alternatives and provides the flexibility to adapt the layout to site-specific requirements.
Helena Canet, Pietro Bortolotti, and Carlo L. Bottasso
Wind Energ. Sci., 6, 601–626, https://doi.org/10.5194/wes-6-601-2021, https://doi.org/10.5194/wes-6-601-2021, 2021
Short summary
Short summary
The paper analyzes in detail the problem of scaling, considering both the steady-state and transient response cases, including the effects of aerodynamics, elasticity, inertia, gravity, and actuation. After a general theoretical analysis of the problem, the article considers two alternative ways of designing a scaled rotor. The two methods are then applied to the scaling of a 10 MW turbine of 180 m in diameter down to three different sizes (54, 27, and 2.8 m).
Freia Harzendorf, Ralf Schelenz, and Georg Jacobs
Wind Energ. Sci., 6, 571–584, https://doi.org/10.5194/wes-6-571-2021, https://doi.org/10.5194/wes-6-571-2021, 2021
Short summary
Short summary
Making wind turbines more reliable over their lifetime is an important goal for improving wind turbine technology. The wind turbine drivetrain has a major influence on turbine reliability. This paper presents an approach that will help to identify holistically better drivetrain concepts in an early product design phase from an operational perspective as it is able to estimate and assess drivetrain-concept-specific inherent risks in the operational phase.
Artur Movsessian, Marcel Schedat, and Torsten Faber
Wind Energ. Sci., 6, 539–554, https://doi.org/10.5194/wes-6-539-2021, https://doi.org/10.5194/wes-6-539-2021, 2021
Short summary
Short summary
The assessment of the structural condition and technical lifetime extension of a wind turbine is challenging due to lack of information for the estimation of fatigue loads. This paper demonstrates the modelling of damage-equivalent loads of the fore–aft bending moments of a wind turbine tower, highlighting the advantage of using the neighbourhood component analysis. This feature selection technique is compared to correlation analysis, stepwise regression, and principal component analysis.
Jan Wiśniewski, Krzysztof Rogowski, Konrad Gumowski, and Jacek Szumbarski
Wind Energ. Sci., 6, 287–294, https://doi.org/10.5194/wes-6-287-2021, https://doi.org/10.5194/wes-6-287-2021, 2021
Short summary
Short summary
The article describes results of experimental wind tunnel and CFD testing of four different straight-bladed vertical axis wind turbine model configurations. The experiment tested a novel concept of vertically dividing and azimuthally shifting a turbine rotor into two parts with a specific uneven height division in order to limit cycle amplitudes and average cycle values of bending moments at the bottom of the turbine shaft to increase product lifetime, especially for industrial-scale turbines.
Gesine Wanke, Leonardo Bergami, Frederik Zahle, and David Robert Verelst
Wind Energ. Sci., 6, 203–220, https://doi.org/10.5194/wes-6-203-2021, https://doi.org/10.5194/wes-6-203-2021, 2021
Short summary
Short summary
This article regards a rotor redesign for a wind turbine in upwind and in downwind rotor configurations. A simple optimization tool is used to estimate the aerodynamic planform, as well as the structural mass distribution of the rotor blade. The designs are evaluated in full load base calculations according to the IEC standard with the aeroelastic tool HAWC2. A scaling model is used to scale turbine and energy costs from the design loads and compare the costs for the turbine configurations.
Oliver Menck, Matthias Stammler, and Florian Schleich
Wind Energ. Sci., 5, 1743–1754, https://doi.org/10.5194/wes-5-1743-2020, https://doi.org/10.5194/wes-5-1743-2020, 2020
Short summary
Short summary
Blade bearings of wind turbines experience unusual loads compared to bearings in other industrial applications, which adds some difficulty to the application of otherwise well-established calculation methods, like fatigue lifetime. As a result, different methods for such calculations can be found in the literature. This paper compares three approaches of varying complexity and comes to the conclusion that the simplest of the methods is very inaccurate compared to the more complex methods.
Gianluca Zorzi, Amol Mankar, Joey Velarde, John D. Sørensen, Patrick Arnold, and Fabian Kirsch
Wind Energ. Sci., 5, 1521–1535, https://doi.org/10.5194/wes-5-1521-2020, https://doi.org/10.5194/wes-5-1521-2020, 2020
Short summary
Short summary
Storms, typhoons or seismic actions are likely to cause permanent rotation of offshore wind turbine foundations. Excessive rotation jeopardizes the operation of the wind turbine. In this study geotechnical, loads and probabilistic modelling are used to develop a reliability framework for predicting the rotation of the foundation under cyclic lateral loading.
Nicola Bodini and Mike Optis
Wind Energ. Sci., 5, 1435–1448, https://doi.org/10.5194/wes-5-1435-2020, https://doi.org/10.5194/wes-5-1435-2020, 2020
Short summary
Short summary
Calculations of annual energy production (AEP) and its uncertainty are critical for wind farm financial transactions. Standard industry practice assumes that different uncertainty categories within an AEP calculation are uncorrelated and can therefore be combined through a sum of squares approach. In this project, we show the limits of this assumption by performing operational AEP estimates for over 470 wind farms in the United States and propose a more accurate way to combine uncertainties.
Simon Letzgus
Wind Energ. Sci., 5, 1375–1397, https://doi.org/10.5194/wes-5-1375-2020, https://doi.org/10.5194/wes-5-1375-2020, 2020
Short summary
Short summary
One of the major challenges when working with wind turbine sensor data in practice is the presence of systematic changes in signal behaviour induced by malfunctions or maintenance actions. We found that approximately every third signal is affected by such change points and introduce an algorithm which reliably detects them in a highly automated fashion. The algorithm enables the application of data-driven techniques to monitor wind turbine components using data from commonly installed sensors.
Emmanuel Branlard, Dylan Giardina, and Cameron S. D. Brown
Wind Energ. Sci., 5, 1155–1167, https://doi.org/10.5194/wes-5-1155-2020, https://doi.org/10.5194/wes-5-1155-2020, 2020
Short summary
Short summary
The paper presents an application of the Kalman filtering technique to estimate loads on a wind turbine. The approach combines a mechanical model and a set of measurements to estimate signals that are not available in the measurements, such as wind speed, thrust, tower position, and tower loads. The model is severalfold faster than real time and is intended to be run online, for instance, to evaluate real-time fatigue life consumption of a field turbine using a digital twin.
Laura Schröder, Nikolay Krasimirov Dimitrov, and David Robert Verelst
Wind Energ. Sci., 5, 1007–1022, https://doi.org/10.5194/wes-5-1007-2020, https://doi.org/10.5194/wes-5-1007-2020, 2020
Short summary
Short summary
We suggest a methodology for correlating loads with component reliability of turbines in wind farms by combining physical modeling with machine learning. The suggested approach is demonstrated on an offshore wind farm for comparing performance, loads and lifetime estimations against recorded main bearing failures from maintenance reports. It is found that turbines positioned at the border of the wind farm with a higher expected AEP are estimated to experience earlier main bearing failures.
João Pacheco, Silvina Guimarães, Carlos Moutinho, Miguel Marques, José Carlos Matos, and Filipe Magalhães
Wind Energ. Sci., 5, 983–996, https://doi.org/10.5194/wes-5-983-2020, https://doi.org/10.5194/wes-5-983-2020, 2020
Short summary
Short summary
This paper introduces the Tocha wind farm, presents the different layouts adopted in the instrumentation of the wind turbines and shows initial results. At this preliminary stage, the capabilities of the very extensive monitoring layout are demonstrated. The results presented demonstrate the ability of the different monitoring components to track the modal parameters of the system, composed of tower and rotor, and to characterize the internal loads at the tower base and blade roots.
Gesine Wanke, Leonardo Bergami, and David Robert Verelst
Wind Energ. Sci., 5, 929–944, https://doi.org/10.5194/wes-5-929-2020, https://doi.org/10.5194/wes-5-929-2020, 2020
Short summary
Short summary
Converting an upwind wind turbine into a downwind configuration is shown to come with higher edgewise loads due to lower edgewise damping. The study shows from modal displacements of a reduced-order turbine model that the interaction between the forces on the rotor, the rotor motion, and the tower torsion is the main reason for the observed damping decrease.
Malo Rosemeier and Matthias Saathoff
Wind Energ. Sci., 5, 897–909, https://doi.org/10.5194/wes-5-897-2020, https://doi.org/10.5194/wes-5-897-2020, 2020
Short summary
Short summary
A huge number of wind turbines have reached their designated lifetime of 20 years.
Most of the turbines installed were overdesigned.
In practice, these turbines could potentially operate longer to increase the energy yield.
For the use case turbine considered in this work, a simple lifetime extension of 8.7 years increases the energy yield by 43.5 %. When the swept rotor area is increased by means of a blade tip extension, the yield is increased by an additional 2.3 %.
Sebastian Perez-Becker, Francesco Papi, Joseph Saverin, David Marten, Alessandro Bianchini, and Christian Oliver Paschereit
Wind Energ. Sci., 5, 721–743, https://doi.org/10.5194/wes-5-721-2020, https://doi.org/10.5194/wes-5-721-2020, 2020
Short summary
Short summary
Aeroelastic design load calculations play a key role in determining the design loads of the different wind turbine components. This study compares load estimations from calculations using a Blade Element Momentum aerodynamic model with estimations from calculations using a higher-order Lifting-Line Free Vortex Wake aerodynamic model. The paper finds and explains the differences in fatigue and extreme turbine loads for power production simulations that cover a wide range of turbulent wind speeds.
Kwangtae Ha, Moritz Bätge, David Melcher, and Steffen Czichon
Wind Energ. Sci., 5, 591–599, https://doi.org/10.5194/wes-5-591-2020, https://doi.org/10.5194/wes-5-591-2020, 2020
Short summary
Short summary
This paper outlines a novel segment test methodology for wind turbine rotor blades. It mainly aims at improving the efficiency of the fatigue test as a future test method at Fraunhofer IWES. The numerical simulation reveals that this method has a significant time savings of up to 43 % and 52 % for 60 and 90 m blades, while improving test quality within an acceptable range of overload. This test methodology could be a technical solution for future offshore rotor blades longer than 100 m.
Jaime Liew, Albert M. Urbán, and Søren Juhl Andersen
Wind Energ. Sci., 5, 427–437, https://doi.org/10.5194/wes-5-427-2020, https://doi.org/10.5194/wes-5-427-2020, 2020
Short summary
Short summary
In wind farms, the interaction between neighboring turbines can cause notable power losses. The focus of the paper is on how the combination of turbine yaw misalignment and wake effects influences the power loss in a wind turbine. The results of the paper show a more notable power loss due to turbine misalignment when turbines are closely spaced. The presented conclusions enable better predictions of a turbine's power production, which can assist the wind farm design process.
Julian Quick, Jennifer King, Ryan N. King, Peter E. Hamlington, and Katherine Dykes
Wind Energ. Sci., 5, 413–426, https://doi.org/10.5194/wes-5-413-2020, https://doi.org/10.5194/wes-5-413-2020, 2020
Short summary
Short summary
We investigate the trade-offs in optimization of wake steering strategies, where upstream turbines are positioned to deflect wakes away from downstream turbines, with a probabilistic perspective. We identify inputs that are sensitive to uncertainty and demonstrate a realistic optimization under uncertainty for a wind power plant control strategy. Designing explicitly around uncertainty yielded control strategies that were generally less aggressive and more robust to the uncertain input.
Frederick Letson, Rebecca J. Barthelmie, and Sara C. Pryor
Wind Energ. Sci., 5, 331–347, https://doi.org/10.5194/wes-5-331-2020, https://doi.org/10.5194/wes-5-331-2020, 2020
Short summary
Short summary
Wind turbine blade leading edge erosion (LEE) is potentially a significant source of energy loss and expense for wind farm operators. This study presents a novel approach to characterizing LEE potential from precipitation across the contiguous USA based on publicly available National Weather Service dual-polarization RADAR data. The approach is described in detail and illustrated using six locations distributed across parts of the USA that have substantial wind turbine deployments.
Erik Quaeghebeur, Sebastian Sanchez Perez-Moreno, and Michiel B. Zaaijer
Wind Energ. Sci., 5, 259–284, https://doi.org/10.5194/wes-5-259-2020, https://doi.org/10.5194/wes-5-259-2020, 2020
Short summary
Short summary
The design and management of an offshore wind farm involve expertise in many disciplines. It is hard for a single person to maintain the overview needed. Therefore, we have created WESgraph, a knowledge base for the wind farm domain, implemented as a graph database. It stores descriptions of the multitude of domain concepts and their various interconnections. It allows users to explore the domain and search for relationships within and across disciplines, enabling various applications.
Lars Einar S. Stieng and Michael Muskulus
Wind Energ. Sci., 5, 171–198, https://doi.org/10.5194/wes-5-171-2020, https://doi.org/10.5194/wes-5-171-2020, 2020
Short summary
Short summary
We present a framework for reducing the cost of support structures for offshore wind turbines that takes into account the many uncertainties that go into the design process. The results demonstrate how an efficient new approach, tailored for support structure design, allows the state of the art for design without uncertainties to be used within a framework that does include these uncertainties. This allows more realistic, and less conservative, design methods
to be used for practical design.
Kenneth Loenbaek, Christian Bak, Jens I. Madsen, and Bjarke Dam
Wind Energ. Sci., 5, 155–170, https://doi.org/10.5194/wes-5-155-2020, https://doi.org/10.5194/wes-5-155-2020, 2020
Short summary
Short summary
From the basic aerodynamic theory of wind turbine rotors, it is a well-known fact that there is a relationship between the loading of the rotor and power efficiency. It shows that there is a loading that maximizes the power efficiency, and it is common to target this maximum when designing rotors. But in this paper it is found that for rotors constrained by a load, the maximum power is found by decreasing the loading and increasing the rotor radius. Max power efficiency is therefore not optimal.
Nikola Vasiljević, Andrea Vignaroli, Andreas Bechmann, and Rozenn Wagner
Wind Energ. Sci., 5, 73–87, https://doi.org/10.5194/wes-5-73-2020, https://doi.org/10.5194/wes-5-73-2020, 2020
Short summary
Short summary
A WindScanner system consisting of two synchronized scanning lidars potentially represents a cost-effective solution for multipoint measurements. However, the lidar limitations and the site limitations are detrimental to the installation of lidars and number and location of measurement positions. To simplify the process of finding suitable measurement positions and lidar installation locations, a campaign planning workflow was devised. The paper describes the workflow and how it was digitalized.
Andrew P. J. Stanley and Andrew Ning
Wind Energ. Sci., 4, 663–676, https://doi.org/10.5194/wes-4-663-2019, https://doi.org/10.5194/wes-4-663-2019, 2019
Short summary
Short summary
When designing a wind farm, one crucial step is finding the correct location or optimizing the location of the wind turbines to maximize power production. In the past, optimizing the turbine layout of large wind farms has been difficult because of the large number of interacting variables. In this paper, we present the boundary-grid parameterization method, which defines the layout of any wind farm with only five variables, allowing people to study and design wind farms regardless of the size.
Daniel S. Zalkind, Gavin K. Ananda, Mayank Chetan, Dana P. Martin, Christopher J. Bay, Kathryn E. Johnson, Eric Loth, D. Todd Griffith, Michael S. Selig, and Lucy Y. Pao
Wind Energ. Sci., 4, 595–618, https://doi.org/10.5194/wes-4-595-2019, https://doi.org/10.5194/wes-4-595-2019, 2019
Short summary
Short summary
We present a model that both (1) reduces the computational effort involved in analyzing design trade-offs and (2) provides a qualitative understanding of the root cause of fatigue and extreme structural loads for wind turbine components from the blades to the tower base. We use this model in conjunction with design loads from high-fidelity simulations to analyze and compare the trade-offs between power capture and structural loading for large rotor concepts.
Amy N. Robertson, Kelsey Shaler, Latha Sethuraman, and Jason Jonkman
Wind Energ. Sci., 4, 479–513, https://doi.org/10.5194/wes-4-479-2019, https://doi.org/10.5194/wes-4-479-2019, 2019
Short summary
Short summary
This paper identifies the most sensitive parameters for the load response of a 5 MW wind turbine. Two sets of parameters are examined: one set relating to the wind excitation characteristics and a second related to the physical properties of the wind turbine. The two sensitivity analyses are done separately, and the top most-sensitive parameters are identified for different load outputs throughout the structure. The findings will guide future validation campaigns and measurement needs.
Pietro Bortolotti, Helena Canet, Carlo L. Bottasso, and Jaikumar Loganathan
Wind Energ. Sci., 4, 397–406, https://doi.org/10.5194/wes-4-397-2019, https://doi.org/10.5194/wes-4-397-2019, 2019
Short summary
Short summary
The paper studies the effects of uncertainties in aeroservoelastic
wind turbine models. Uncertainties are associated with the wind
inflow characteristics and the blade surface state, and they are propagated
by means of two non-intrusive methods throughout the
aeroservoelastic model of a large conceptual offshore wind
turbine. Results are compared with a brute-force extensive Monte
Carlo sampling to assess the convergence characteristics of the
non-intrusive approaches.
Andrés Santiago Padrón, Jared Thomas, Andrew P. J. Stanley, Juan J. Alonso, and Andrew Ning
Wind Energ. Sci., 4, 211–231, https://doi.org/10.5194/wes-4-211-2019, https://doi.org/10.5194/wes-4-211-2019, 2019
Short summary
Short summary
We propose the use of a new method to efficiently compute the annual energy production (AEP) of a wind farm by properly handling the uncertainties in the wind direction and wind speed. We apply the new ideas to the layout optimization of a large wind farm. We show significant computational savings by reducing the number of simulations required to accurately compute and optimize the AEP of different wind farms.
Mads H. Aa. Madsen, Frederik Zahle, Niels N. Sørensen, and Joaquim R. R. A. Martins
Wind Energ. Sci., 4, 163–192, https://doi.org/10.5194/wes-4-163-2019, https://doi.org/10.5194/wes-4-163-2019, 2019
Short summary
Short summary
The wind energy industry relies heavily on CFD to analyze new designs. This paper investigates a way to utilize CFD further upstream the design process where lower-fidelity methods are used. We present the first comprehensive 3-D CFD adjoint-based shape optimization of a 10 MW modern offshore wind turbine. The present work shows that, with the right tools, we can model the entire geometry, including the root, and optimize modern wind turbine rotors at the cost of a few hundred CFD evaluations.
Pietro Bortolotti, Abhinav Kapila, and Carlo L. Bottasso
Wind Energ. Sci., 4, 115–125, https://doi.org/10.5194/wes-4-115-2019, https://doi.org/10.5194/wes-4-115-2019, 2019
Short summary
Short summary
The paper compares upwind and downwind three-bladed configurations
for a 10 MW wind turbine in terms of power and loads. For the
downwind case, the study also considers a load-aligned solution
with active coning. Results indicate that downwind solutions are
slightly more advantageous than upwind ones, although improvements
are small. Additionally, pre-alignment is difficult to achieve in
practice, and the active coning solution is associated with very
significant engineering challenges.
Cited articles
Al-Dousari, A., Al-Nassar, W., Al-Hemoud, A., Alsaleh, A., Ramadan, A.,
Al-Dousari, N., and Ahmed, M.:. Solar and wind energy: challenges and solutions in desert regions, Energy, 176, 184–194, 2019.
Ancell, B. and Hakim, G. J.: Comparing adjoint- and ensemble-sensitivity
analysis with applications to observation targeting, Mon. Weather Rev., 135,
4117–4134, https://doi.org/10.1175/2007MWR1904.1, 2007.
Baker, R. W., Hewson, E. W., Butler, N. G., and Warchol, E. J.: Wind power potential in the Pacific Northwest, J. Appl. Meteorol., 17, 1814–1826, https://doi.org/10.1175/1520-0450(1978)017<1814:WPPITP>2.0.CO;2, 1978.
Banta, R. M., Pichugina, Y. L., Kelley, N. D., Hardesty, R. M., and Brewer, W. A.: Wind Energy Meteorology: Insight into Wind Properties in the Turbine-Rotor Layer of the Atmosphere from High-Resolution Doppler Lidar, B. Am. Meteorol. Soc., 94, 883–902, https://doi.org/10.1175/bams-d-11-00057.1, 2013.
Banta, R. M., Pichugina, Y. L., Brewer, W. A., James, E. P., Olson, J. B., Benjamin, S. G., Carley, J. R., Bianco, L., Djalalova, I. V., Wilczak, J. M., Hardesty, R. M., Cline, J., and Marquis, M. C.: Evaluating and Improving NWP Forecast Models for the Future: How the Needs of Offshore Wind Energy Can Point the Way, B. Am. Meteorol. Soc., 99, 1155–1176, https://doi.org/10.1175/bams-d-16-0310.1, 2018.
Banta, R. M., Pichugina, Y. L., Brewer, W. A., Choukulkar, A., Lantz, K. O.,
Olson, J. B., Kenyon, J., Fernando, H. J. S., Krishnamurthy, R., Stoelinga,
M. J., Sharp, J., Darby, L. S., Turner, D. D., Baidar, S., and Sandberg, S. P.: Characterizing NWP model errors using doppler-lidar measurements of
recurrent regional diurnal flows: Marine-air intrusions into the Columbia
River Basin, Mon. Weather Rev., 148, 929–953, https://doi.org/10.1175/MWR-D-19-0188.1, 2020.
Barker, D. M., Huang, W., Guo, Y.-R., Bourgeois, A. J., and Xiao, Q. N.: A
Three-Dimensional Variational Data Assimilation System for MM5: Implementation and Initial Results, Mon. Weather Rev., 132,897–914, https://doi.org/10.1175/1520-0493(2004)132<0897:atvdas>2.0.co;2, 2004.
Berg, L. K., Liu, Y., Yang, B., Qian, Y., Olson, J., Pekour, M., Ma, P. L.,
and Hou, Z.: Sensitivity of Turbine-Height Wind Speeds to Parameters in the
Planetary Boundary-Layer Parametrization Used in the Weather Research and
Forecasting Model: Extension to Wintertime Conditions, Bound.-Lay. Meteorol., 170, 507–518, https://doi.org/10.1007/s10546-018-0406-y, 2019
Berg, L. K., Liu, Y., Yang, B., Qian, Y., Krishnamurthy, R., Sheridan, L.,
and Olson, J.: Time Evolution and Diurnal Variability of the Parametric
Sensitivity of Turbine-Height Winds in the MYNN-EDMF Parameterization. J.
Geophys. Res. Atmos., 126, e2020JD034000, https://doi.org/10.1029/2020jd034000, 2021.
Brewer, M. C. and Mass, C. F.: Simulation of summer diurnal circulations over the northwest United States, Weather Forecast., 29, 1208–1228, https://doi.org/10.1175/WAF-D-14-00018.1, 2014.
Deppe, A. J., Gallus, W. A., and Takle, E. S.: A WRF ensemble for improved wind speed forecasts at turbine height, Weather Forecast., 28, 212–228,
https://doi.org/10.1175/WAF-D-11-00112.1, 2013.
Dyer, A. J. and Hicks, B. B.: Flux-gradient relationships in the constant flux layer, Q. J. Roy. Meteorol. Soc., 96, 715–721, 1970.
Hill, A. J., Weiss, C. C., and Ancell, B. C.: Ensemble sensitivity analysis for mesoscale forecasts of dryline convection initiation, Mon. Weather Rev., 144, 4161–4182, https://doi.org/10.1175/MWR-D-15-0338.1, 2016.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos.,
113, D13103, https://doi.org/10.1029/2008jd009944, 2008.
Kohonen, T.: Self-organized formation of topologically correct feature maps, Biol. Cybern., 43, 59–69, https://doi.org/10.1007/bf00337288, 1982.
Liu, Y., Qian, Y. and Berg, L. K.: wfip2.model/casestudy.wrf.01.seabreeze.01, Atmosphere to Electrons (A2e) Data Archive and Portal for US Department of Energy, Office of Energy Efficiency and Renewable Energy [data set], https://doi.org/10.21947/1819819, 2021a.
Liu, Y., Qian, Y. and Berg, L. K.: wfip2.model/casestudy.wrf.02.seabreeze.02, Atmosphere to Electrons (A2e) Data Archive and Portal for US Department of Energy, Office of Energy Efficiency and Renewable Energy [data set], https://doi.org/10.21947/1819820, 2021b.
Liu, Y., Qian, Y. and Berg, L. K.: wfip2.model/casestudy.wrf.01.coldfront.01, Atmosphere to Electrons (A2e) Data Archive and Portal for US Department of Energy, Office of Energy Efficiency and Renewable Energy [data set], https://doi.org/10.21947/1819817, 2021c.
Liu, Y., Qian, Y., and Berg, L. K.: wfip2.model/casestudy.wrf.02.coldfront.02, Atmosphere to Electrons (A2e) Data Archive and Portal for US Department of Energy, Office of Energy Efficiency and Renewable Energy [data set], https://doi.org/10.21947/1819818, 2021d.
Marquis, M., Wilczak, J., Ahlstrom, M., Sharp, J., Stern, A., Smith, J. C., and Calvert, S.: Forecasting the Wind to Reach Significant Penetration Levels of Wind Energy, B. Am. Meteorol. Soc., 92, 1159–1171, https://doi.org/10.1175/2011bams3033.1, 2011.
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E. H., Ek, M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D., and Shi, W.: North American regional reanalysis, B. Am. Meteorol. Soc., 87, 343–360, https://doi.org/10.1175/BAMS-87-3-343, 2006.
Nakanishi, M. and Niino, H.: An improved Mellor-Yamada Level-3 model: Its
numerical stability and application to a regional prediction of advection fog, Bound.-Lay. Meteorol., 119, 397–407, https://doi.org/10.1007/s10546-005-9030-8, 2006.
Nakanishi, M. and Niino, H.: Development of an improved turbulence closure model for the atmospheric boundary layer, J. Meteorol. Soc. Jpn., 87, 895–912, https://doi.org/10.2151/jmsj.87.895, 2009.
National Renewable Energy Laboratory: 20 % wind energy by 2030: Increasing
wind energy's contribution to US electricity supply, Washington, DC, available at: https://www.nrel.gov/docs/fy09osti/42864.pdf (last access: 3 April 2021), 2008.
Ohba, M., Kadokura, S., and Nohara, D.: Medium-range probabilistic forecasts of wind power generation and ramps in Japan based on a hybrid ensemble,
Atmosphere, 9, 423, https://doi.org/10.3390/atmos9110423, 2018.
Olson, J. B., Kenyon, J. S., Angevine, W. A., Brown, J. M., Pagowski, M., and
Sušelj, K.: A Description of the MYNN-EDMF Scheme and the Coupling to
Other Components in WRF–ARW, NOAA Tech. Memo. OAR UAS-003, https://doi.org/10.7289/V5/TM-OAR-UAS-003, 2019a.
Olson, J. B., Kenyon, J. S., Djalalova, I., Bianco, L., Turner, D. D.,
Pichugina, Y., Choukulkar, A., Toy, M. D., Brown, J. M., Angevine, W. M.,
Akish, E., Bao, J. W., Jimenez, P., Kosovic, B., Lundquist, K. A., Draxl, C.,
Lundquist, J. K., McCaa, J., McCaffrey, K., Lantz, K., Long, C., Wilczak, J.,
Banta, R., Marquis, M., Redfern, S., Berg, L. K., Shaw, W., and Cline, J.:
Improving wind energy forecasting through numerical weather prediction model
development, B. Am. Meteorol. Soc., 100, 2201–2220, https://doi.org/10.1175/BAMS-D-18-0040.1, 2019b.
Oren, S.: Renewable energy integration and the impact of carbon regulation on the electric grid, in: 2012 IEEE Power and Energy Society General Meeting, 22–26 July 2012, San Diego, CA, USA, 1–2, https://doi.org/10.1109/PESGM.2012.6344802, 2012.
Qian, Y., Yan, H., Hou, Z., Johannesson, G., Klein, S., Lucas, D., Neale,
R., Rasch, P., Swiler, L., Tannahill, J., Wang, H., Wang, M., and Zhao, C.:
Parametric sensitivity analysis of precipitation at global and local scales in the Community Atmosphere Model CAM5, J. Adv. Model. Earth Syst., 7, 382–411, https://doi.org/10.1002/2014MS000354, 2015.
Sharp, J. and Mass, C. F.: Columbia Gorge gap winds: Their climatological
influence and synoptic evolution, Weather Forecast., 19, 970–992, https://doi.org/10.1175/826.1, 2004.
Shaw, W. J., Lundquist, J. K., and Schreck, S. J.: Research needs for wind resource characterization, B. Am. Meteorol. Soc., 90, 535–538, https://doi.org/10.1175/2008BAMS2729.1, 2009.
Shaw, W. J., Berg, L. K., Cline, J., Draxl, C., Djalalova, I., Grimit, E. P.,
Lundquist, J. K., Marquis, M., McCaa, J., Olson, J. B., Sivaraman, C., Sharp,
J., and Wilczak, J. M.: The second wind forecast improvement project (wfip2)
general overview, B. Am. Meteorol. Soc., 100, 1687–1699, https://doi.org/10.1175/BAMS-D-18-0036.1, 2019.
Simpson, J. E.: Sea breeze and local winds, Cambridge University Press, New York, 234 pp., 1994.
Siuta, D., West, G., and Stull, R.: WRF hub-height wind forecast sensitivity to PBL scheme, grid length, and initial condition choice in complex terrain,
Weather Forecast., 32, 493–509, https://doi.org/10.1175/WAF-D-16-0120.1, 2017a.
Siuta, D., West, G., Stull, R., and Nipen, T.: Calibrated probabilistic
hub-height wind forecasts in complex terrain, Weather Forecast., 32, 555–577, https://doi.org/10.1175/WAF-D-16-0137.1, 2017b.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D., and Huang, X.-Y.: A Description of the Advanced Research WRF Model Version 4.1, No. NCAR/TN-556+STR, NCAR, https://doi.org/10.5065/1dfh-6p97, 2019.
Smirnova, T. G., Brown, J. M., Benjamin, S. G., and Kenyon, J. S.: Modifications to the Rapid Update Cycle land surface model (RUC LSM) available in the weather research and forecasting (WRF) model, Mon. Weather Rev., 144, 1851–1865, https://doi.org/10.1175/MWR-D-15-0198.1, 2016.
Smith, N. H. and Ancell, B. C.: Ensemble sensitivity analysis of wind ramp events with applications to observation targeting, Mon. Weather Rev., 145,
2505–2522, https://doi.org/10.1175/MWR-D-16-0306.1, 2017.
Smith, N. H. and Ancell, B. C.: Variations in parametric sensitivity for wind
ramp events in the columbia river basin, Mon. Weather Rev., 147, 4633–4651,
https://doi.org/10.1175/MWR-D-19-0019.1, 2019.
Song, F., Feng, Z., Ruby Leung, L., Houze, R. A., Wang, J., Hardin, J., and
Homeyer, C. R.: Contrasting spring and summer large-scale environments
associated with mesoscale convective systems over the U.S. Great Plains, J.
Climate, 32, 6749–6767, https://doi.org/10.1175/JCLI-D-18-0839.1, 2019.
Spassiani, A. C. and Mason, M. S.: Application of Self-organizing Maps to
classify the meteorological origin of wind gusts in Australia, J. Wind Eng.
Ind. Aerodyn., 210, 104529, https://doi.org/10.1016/j.jweia.2021.104529, 2021.
Thompson, G. and Eidhammer, T.: A study of aerosol impacts on clouds and
precipitation development in a large winter cyclone, J. Atmos. Sci., 71,
3636–3658, https://doi.org/10.1175/JAS-D-13-0305.1, 2014.
Torn, R. D., Hakim, G. J., and Snyder, C.: Boundary conditions for limited-area ensemble Kalman filters, Mon. Weather Rev., 134, 2490–2502, https://doi.org/10.1175/MWR3187.1, 2006.
Torn, R. D., Romine, G. S., and Galarneau, T. J.: Sensitivity of dryline convection forecasts to upstream forecast errors for two weakly forced MPEX cases, Mon. Weather Rev., 145, 1831–1852, https://doi.org/10.1175/MWR-D-16-0457.1, 2017.
Wilczak, J. M., Stoelinga, M., Berg, L. K., Sharp, J., Draxl, C., McCaffrey,
K., Banta, R. M., Bianco, L., Djalalova, I., Lundquist, J. K., Muradyan, P.,
Choukulkar, A., Leo, L., Bonin, T., Pichugina, Y., Eckman, R., Long, C. N.,
Lantz, K., Worsnop, R. P., Bickford, J., Bodini, N., Chand, D., Clifton, A.,
Cline, J., Cook, D. R., Fernando, H. J. S., Friedrich, K., Krishnamurthy, R.,
Marquis, M., McCaa, J., Olson, J. B., Otarola-Bustos, S., Scott, G., Shaw,
W. J., Wharton, S., and White, A. B.: The Second Wind Forecast Improvement Project (WFIP2): Observational Field Campaign, B. Am. Meteorol. Soc., 100,
1687–1700, https://doi.org/10.1175/BAMS-D-18-0035.1, 2019.
Willis, D. J., Niezrecki, C., Kuchma, D., Hines, E., Arwade, S. R.,
Barthelmie, R. J., DiPaola, M., Drane, P. J., and Hansen, C. J., Inalpolat, M.: Wind energy research: State-of-the-art and future research directions,
Renew. Energy, 125, 133–154, 2018.
Xia, G., Draxl, C., Berg, L. K., and Cook, D.: Quantifying the Impacts of Land Surface Modeling on Hub-Height Wind Speed under Different Soil Conditions, Mon. Weather Rev., 149, 3101–3118, https://doi.org/10.1175/MWR-D-20-0363.1, 2021.
Yang, B., Qian, Y., Berg, L. K., Ma, P. L., Wharton, S., Bulaevskaya, V., Yan, H., Hou, Z., and Shaw, W. J.: Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the
Weather Research and Forecasting Model, Bound.-Lay. Meteorol., 162, 117–142, https://doi.org/10.1007/s10546-016-0185-2, 2017.
Yang, B., Berg, L. K., Qian, Y., Wang, C., Hou, Z., Liu, Y., Shin, H. H., Hong, S., and Pekour, M.: Parametric and Structural Sensitivities of
Turbine-Height Wind Speeds in the Boundary Layer Parameterizations in the
Weather Research and Forecasting Model, J. Geophys. Res.-Atmos. 124, 5951–5969, https://doi.org/10.1029/2018JD029691, 2019.
Yang, Q., Berg, L. K., Pekour, M., Fast, J. D., Newsom, R. K., Stoelinga, M.,
and Finley, C.: Evaluation of WRF-predicted near-hub-height winds and ramp
events over a pacific northwest site with complex terrain, J. Appl. Meteorol. Clim. 52, 1753–1763, https://doi.org/10.1175/JAMC-D-12-0267.1, 2013.
Zack, J., Natenberg, E., Young, S., Van Knowe, G., Waight, K., Manobainco, J., and Kamath, C.: Application of ensemble sensitivity analysis to observation targeting for short-term wind speed forecasting in the Tehachapi region winter season, Lawrence Livermore Natl. Lab. Tech. Rep. LLNL-TR-42, Lawrence Livermore National Lab. (LLNL), Livermore, CA, USA, 32 pp., https://doi.org/10.2172/1124905, 2010.
Short summary
Uncertainties in initial conditions (ICs) decrease the accuracy of wind speed forecasts. We find that IC uncertainties can alter wind speed by modulating the weather system. IC uncertainties in local thermal gradient and large-scale circulation jointly contribute to wind speed forecast uncertainties. Wind forecast accuracy in the Columbia River Basin is confined by initial uncertainties in a few specific regions, providing useful information for more intense measurement and modeling studies.
Uncertainties in initial conditions (ICs) decrease the accuracy of wind speed forecasts. We find...
Altmetrics
Final-revised paper
Preprint