Articles | Volume 7, issue 3
https://doi.org/10.5194/wes-7-991-2022
https://doi.org/10.5194/wes-7-991-2022
Research article
 | 
11 May 2022
Research article |  | 11 May 2022

Effectively using multifidelity optimization for wind turbine design

John Jasa, Pietro Bortolotti, Daniel Zalkind, and Garrett Barter

Related authors

Influence of wind turbine design parameters on linearized physics-based models in OpenFAST
Jason M. Jonkman, Emmanuel S. P. Branlard, and John P. Jasa
Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022,https://doi.org/10.5194/wes-7-559-2022, 2022
Short summary
Quantifying the effect of blockage for wind farm layout optimization
Ethan Young, Jeffery Allen, John Jasa, Garrett Barter, and Ryan King
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-7,https://doi.org/10.5194/wes-2022-7, 2022
Preprint withdrawn
Short summary

Related subject area

Design methods, reliability and uncertainty modelling
Efficient Bayesian calibration of aerodynamic wind turbine models using surrogate modeling
Benjamin Sanderse, Vinit V. Dighe, Koen Boorsma, and Gerard Schepers
Wind Energ. Sci., 7, 759–781, https://doi.org/10.5194/wes-7-759-2022,https://doi.org/10.5194/wes-7-759-2022, 2022
Short summary
Fast yaw optimization for wind plant wake steering using Boolean yaw angles
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci., 7, 741–757, https://doi.org/10.5194/wes-7-741-2022,https://doi.org/10.5194/wes-7-741-2022, 2022
Short summary
A simplified, efficient approach to hybrid wind and solar plant site optimization
Charles Tripp, Darice Guittet, Jennifer King, and Aaron Barker
Wind Energ. Sci., 7, 697–713, https://doi.org/10.5194/wes-7-697-2022,https://doi.org/10.5194/wes-7-697-2022, 2022
Short summary
Influence of wind turbine design parameters on linearized physics-based models in OpenFAST
Jason M. Jonkman, Emmanuel S. P. Branlard, and John P. Jasa
Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022,https://doi.org/10.5194/wes-7-559-2022, 2022
Short summary
Input torque measurements for wind turbine gearboxes using fiber-optic strain sensors
Unai Gutierrez Santiago, Alfredo Fernández Sisón, Henk Polinder, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 505–521, https://doi.org/10.5194/wes-7-505-2022,https://doi.org/10.5194/wes-7-505-2022, 2022
Short summary

Cited articles

Abbas, N. J., Zalkind, D. S., Pao, L., and Wright, A.: A reference open-source controller for fixed and floating offshore wind turbines, Wind Energ. Sci., 7, 53–73, https://doi.org/10.5194/wes-7-53-2022, 2022. a
Abdallah, I., Lataniotis, C., and Sudret, B.: Parametric hierarchical kriging for multi-fidelity aero-servo-elastic simulators – Application to extreme loads on wind turbines, Probabil. Eng. Mech., 55, 67–77, 2019. a
Alexandrov, N. M., Dennis, J., Lewis, R. M., and Torczon, V.: A trust-region framework for managing the use of approximation models in optimization, Struct. Optimiz., 15, 16–23, 1998. a
Alexandrov, N. M., Lewis, R. M., Gumbert, C. R., Green, L. L., and Newman, P. A.: Approximation and model management in aerodynamic optimization with variable-fidelity models, J. Aircraft, 38, 1093–1101, 2001. a
Allen, C., Viselli, A., Dagher, H., Goupee, A., Gaertner, E., Abbas, N., Hall, M., and Barter, G.: Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15-Megawatt Offshore Reference Wind Turbine, Tech. Rep. NREL/TP-76773, International Energy Agency, https://doi.org/10.2172/1660012, 2020. a
Download
Short summary
Using highly accurate simulations within a design cycle is prohibitively computationally expensive. We implement and present a multifidelity optimization method and showcase its efficacy using three different case studies. We examine aerodynamic blade design, turbine controls tuning, and a wind plant layout problem. In each case, the multifidelity method finds an optimal design that performs better than those obtained using simplified models but at a lower cost than high-fidelity optimization.
Altmetrics
Final-revised paper
Preprint