Articles | Volume 2, issue 1
Wind Energ. Sci., 2, 295–306, 2017
Wind Energ. Sci., 2, 295–306, 2017
Research article
02 Jun 2017
Research article | 02 Jun 2017

Atmospheric turbulence affects wind turbine nacelle transfer functions

Clara M. St. Martin et al.

Related authors

Wind turbine power production and annual energy production depend on atmospheric stability and turbulence
Clara M. St. Martin, Julie K. Lundquist, Andrew Clifton, Gregory S. Poulos, and Scott J. Schreck
Wind Energ. Sci., 1, 221–236,,, 2016
Short summary

Related subject area

Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169,,, 2022
Short summary
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091,,, 2022
Short summary
Large-eddy simulation of airborne wind energy farms
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135,,, 2022
Short summary
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990,,, 2022
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886,,, 2022
Short summary

Cited articles

Aitken, M. L., Lundquist, J. K., Pichugina, Y. L., and Banta, R. M.: Quantifying wind turbine wake characteristics from scanning remote sensor data, J. Atmos. Ocean. Tech., 31, 765–787,, 2014.
Antoniou, I. and Pedersen, T. F.: Nacelle Anemometry on a 1MW Wind Turbine, Risø National Laboratory, Roskilde, Denmark, 37 pp., 1997.
Antoniou, I., Pedersen, S. M., and Enevoldsen, P. B.: Wind shear and uncertainties in power curve measurement and wind resources, Wind Eng., 33, 449–468,, 2009.
Bibor, E. and Masson, C.: Power Performance via Nacelle Anemometry on Complex Terrain, Wind Energy, Springer Berlin Heidelberg, 43–47, 2007.
Bingöl, F., Mann, J., and Foussekis, D.: Conically scanning LIDAR error in complex terrain, Meteorol. Z., 18, 189–195,, 2009.
Short summary
We use upwind and nacelle-based measurements from a wind turbine and investigate the influence of atmospheric stability and turbulence regimes on nacelle transfer functions (NTFs) used to correct nacelle-mounted anemometer measurements. This work shows that correcting nacelle winds using NTFs results in similar energy production estimates to those obtained using upwind tower-based wind speeds. Further, stability and turbulence metrics have been found to have an effect on NTFs below rated speed.