Articles | Volume 2, issue 2
https://doi.org/10.5194/wes-2-507-2017
https://doi.org/10.5194/wes-2-507-2017
Research article
 | 
16 Nov 2017
Research article |  | 16 Nov 2017

An engineering model for 3-D turbulent wind inflow based on a limited set of random variables

Manuel Fluck and Curran Crawford

Related authors

Data-driven surrogate model for wind turbine damage equivalent load
Rad Haghi and Curran Crawford
Wind Energ. Sci., 9, 2039–2062, https://doi.org/10.5194/wes-9-2039-2024,https://doi.org/10.5194/wes-9-2039-2024, 2024
Short summary
Impact of wind profiles on ground-generation airborne wind energy system performance
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 8, 1153–1178, https://doi.org/10.5194/wes-8-1153-2023,https://doi.org/10.5194/wes-8-1153-2023, 2023
Short summary
Comparison of optimal power production and operation of unmoored floating offshore wind turbines and energy ships
Patrick Connolly and Curran Crawford
Wind Energ. Sci., 8, 725–746, https://doi.org/10.5194/wes-8-725-2023,https://doi.org/10.5194/wes-8-725-2023, 2023
Short summary
Scaling effects of fixed-wing ground-generation airborne wind energy systems
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 7, 1847–1868, https://doi.org/10.5194/wes-7-1847-2022,https://doi.org/10.5194/wes-7-1847-2022, 2022
Short summary
Surrogate models for the blade element momentum aerodynamic model using non-intrusive polynomial chaos expansions
Rad Haghi and Curran Crawford
Wind Energ. Sci., 7, 1289–1304, https://doi.org/10.5194/wes-7-1289-2022,https://doi.org/10.5194/wes-7-1289-2022, 2022
Short summary

Related subject area

Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022,https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022,https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Large-eddy simulation of airborne wind energy farms
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022,https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022,https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary

Cited articles

Bergami, L. and Gaunaa, M.: Analysis of aeroelastic loads and their contributions to fatigue damage, J. Phys. Conf. Ser., 555, 67–76, https://doi.org/10.1088/1742-6596/555/1/012007, 2014.
Bertagnolio, F., Rasmussen, F., Sørensen, N. N., Johansen, J., and Madsen, H. A.: A stochastic model for the simulation of wind turbine blades in static stall, Wind Energy, 13, 323–338, https://doi.org/10.1002/we.342, 2010.
Burton, T., Jenkins, N., Sharpe, D., and Bossanyi, E.: Wind energy handbook, Wiley, Chichester, West Sussex, UK, 2011.
Chay, M., Albermani, F., and Wilson, R.: Numerical and analytical simulation of downburst wind loads, Eng. Struct., 28, 240–254, 2006.
Desai, A. and Sarkar, S.: Analysis of a nonlinear aeroelastic system with parametric uncertainties using polynomial chaos expansion, Math. Probl. Eng., 2010, 379472, https://doi.org/10.1155/2010/379472, 2010.
Download
Short summary
We present an engineering model of 3-D turbulent wind inflow which reduces the number of random variables required from tens of thousands to ~ 20. This new model is a vital step towards stochastic modelling of wind turbines. Such models can quickly assess turbine lifetime loads and fluctuating power output and thus can be used to design better turbines. However, stochastic models are only viable when the input is expressed with very few random variables, hence the new wind model presented here.
Altmetrics
Final-revised paper
Preprint