Articles | Volume 5, issue 4
Wind Energ. Sci., 5, 1253–1272, 2020
https://doi.org/10.5194/wes-5-1253-2020
Wind Energ. Sci., 5, 1253–1272, 2020
https://doi.org/10.5194/wes-5-1253-2020

Research article 08 Oct 2020

Research article | 08 Oct 2020

Lidar measurements of yawed-wind-turbine wakes: characterization and validation of analytical models

Peter Brugger et al.

Related authors

Field measurements of wake meandering at a utility-scale wind turbine with nacelle-mounted Doppler LiDARs
Peter Andreas Brugger, Corey D. Markfort, and Fernando Porté-Agel
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-95,https://doi.org/10.5194/wes-2021-95, 2021
Preprint under review for WES
Short summary
Options to correct local turbulent flux measurements for large-scale fluxes using a LES-based approach
Matthias Mauder, Andreas Ibrom, Luise Wanner, Frederik De Roo, Peter Brugger, Ralf Kiese, and Kim Pilegaard
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-126,https://doi.org/10.5194/amt-2021-126, 2021
Preprint under review for AMT
Short summary
Turbulent transport of energy across a forest and a semiarid shrubland
Tirtha Banerjee, Peter Brugger, Frederik De Roo, Konstantin Kröniger, Dan Yakir, Eyal Rotenberg, and Matthias Mauder
Atmos. Chem. Phys., 18, 10025–10038, https://doi.org/10.5194/acp-18-10025-2018,https://doi.org/10.5194/acp-18-10025-2018, 2018
Short summary

Related subject area

Wind and turbulence
Probabilistic estimation of the Dynamic Wake Meandering model parameters using SpinnerLidar-derived wake characteristics
Davide Conti, Nikolay Dimitrov, Alfredo Peña, and Thomas Herges
Wind Energ. Sci., 6, 1117–1142, https://doi.org/10.5194/wes-6-1117-2021,https://doi.org/10.5194/wes-6-1117-2021, 2021
Short summary
Recovery processes in a large offshore wind farm
Tanvi Gupta and Somnath Baidya Roy
Wind Energ. Sci., 6, 1089–1106, https://doi.org/10.5194/wes-6-1089-2021,https://doi.org/10.5194/wes-6-1089-2021, 2021
Short summary
Extreme wind shear events in US offshore wind energy areas and the role of induced stratification
Mithu Debnath, Paula Doubrawa, Mike Optis, Patrick Hawbecker, and Nicola Bodini
Wind Energ. Sci., 6, 1043–1059, https://doi.org/10.5194/wes-6-1043-2021,https://doi.org/10.5194/wes-6-1043-2021, 2021
Short summary
WRF-simulated low-level jets over Iowa: characterization and sensitivity studies
Jeanie A. Aird, Rebecca J. Barthelmie, Tristan J. Shepherd, and Sara C. Pryor
Wind Energ. Sci., 6, 1015–1030, https://doi.org/10.5194/wes-6-1015-2021,https://doi.org/10.5194/wes-6-1015-2021, 2021
Short summary
Correlations of power output fluctuations in an offshore wind farm using high-resolution SCADA data
Janna Kristina Seifert, Martin Kraft, Martin Kühn, and Laura J. Lukassen
Wind Energ. Sci., 6, 997–1014, https://doi.org/10.5194/wes-6-997-2021,https://doi.org/10.5194/wes-6-997-2021, 2021
Short summary

Cited articles

Abdulrahman, M. A.: Wind Farm Layout Optimization Considering Commercial Turbine Selection and Hub Height Variation, PhD thesis, University of Calgary, Calgary, Canada, https://doi.org/10.11575/PRISM/28711, 2017. a
Abkar, M., Sørensen, J. N., and Porté-Agel, F.: An Analytical Model for the Effect of Vertical Wind Veer on Wind Turbine Wakes, Energies, 11, 7, https://doi.org/10.3390/en11071838, 2018. a
Adaramola, M. and Krogstad, P.-Ã.: Experimental investigation of wake effects on wind turbine performance, Renew. Energ., 36, 2078–2086, https://doi.org/10.1016/j.renene.2011.01.024, 2011. a
Annoni, J., Fleming, P., Scholbrock, A., Roadman, J., Dana, S., Adcock, C., Porte-Agel, F., Raach, S., Haizmann, F., and Schlipf, D.: Analysis of control-oriented wake modeling tools using lidar field results, Wind Energ. Sci., 3, 819–831, https://doi.org/10.5194/wes-3-819-2018, 2018. a
Barthelmie, R. J., Pryor, S. C., Frandsen, S. T., Hansen, K. S., Schepers, J. G., Rados, K., Schlez, W., Neubert, A., Jensen, L. E., and Neckelmann, S.: Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms, J. Atmos. Ocean. Tech., 27, 1302–1317, https://doi.org/10.1175/2010JTECHA1398.1, 2010. a, b
Download
Short summary
A wind turbine can actively influence its wake by turning the rotor out of the wind direction to deflect the wake away from a downstream wind turbine. This technique was tested in a field experiment at a wind farm, where the inflow and wake were monitored with remote-sensing instruments for the wind speed. The behaviour of the wake deflection agrees with the predictions of two analytical models, and a bias of the wind direction perceived by the yawed wind turbine led to suboptimal power gains.