Articles | Volume 5, issue 4
https://doi.org/10.5194/wes-5-1507-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/wes-5-1507-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of the lattice Boltzmann method for wind modelling in complex terrain
Alain Schubiger
CORRESPONDING AUTHOR
University of Applied Sciences Rapperswil (HSR), Oberseestrasse 10, 8640 Rapperswil, Switzerland
Sarah Barber
University of Applied Sciences Rapperswil (HSR), Oberseestrasse 10, 8640 Rapperswil, Switzerland
Henrik Nordborg
University of Applied Sciences Rapperswil (HSR), Oberseestrasse 10, 8640 Rapperswil, Switzerland
Related authors
No articles found.
Sarah Barber, Anna Maria Sempreviva, Jeffrey Clerc, and Anne Hegemann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-159, https://doi.org/10.5194/wes-2025-159, 2025
Preprint under review for WES
Short summary
Short summary
This paper explores how organisational culture shapes digitalisation in the wind energy sector. Based on a global survey and literature review, it finds that teams drive digital adoption more effectively than entire organisations, with companies ahead of universities. Size has little impact, but barriers such as limited budgets, vague strategies, and risk-averse leadership slow progress. The study offers practical recommendations to foster collaboration, innovation, and clear digital strategies.
Philip Imanuel Franz, Imad Abdallah, Gregory Duthé, Julien Deparday, Ali Jafarabadi, Alexander Popp, Sarah Barber, and Eleni Chatzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-26, https://doi.org/10.5194/wes-2025-26, 2025
Revised manuscript accepted for WES
Short summary
Short summary
New designs of large wind turbine blades have become increasingly flexible, and thus need cost-efficient monitoring solutions. Hence, we investigate if aerodynamic pressure measurements from a low-cost sensing system can be used to detect structural damage. Our research is based on a wind tunnel study, emulating a simplified wind turbine blade under various conditions. We show that using a convolutional neural network-based method, structural damage can indeed be detected and its severity rated.
Yuriy Marykovskiy, Thomas Clark, Justin Day, Marcus Wiens, Charles Henderson, Julian Quick, Imad Abdallah, Anna Maria Sempreviva, Jean-Paul Calbimonte, Eleni Chatzi, and Sarah Barber
Wind Energ. Sci., 9, 883–917, https://doi.org/10.5194/wes-9-883-2024, https://doi.org/10.5194/wes-9-883-2024, 2024
Short summary
Short summary
This paper delves into the crucial task of transforming raw data into actionable knowledge which can be used by advanced artificial intelligence systems – a challenge that spans various domains, industries, and scientific fields amid their digital transformation journey. This article underscores the significance of cross-industry collaboration and learning, drawing insights from sectors leading in digitalisation, and provides strategic guidance for further development in this area.
Andrew Clifton, Sarah Barber, Andrew Bray, Peter Enevoldsen, Jason Fields, Anna Maria Sempreviva, Lindy Williams, Julian Quick, Mike Purdue, Philip Totaro, and Yu Ding
Wind Energ. Sci., 8, 947–974, https://doi.org/10.5194/wes-8-947-2023, https://doi.org/10.5194/wes-8-947-2023, 2023
Short summary
Short summary
Wind energy creates huge amounts of data, which can be used to improve plant design, raise efficiency, reduce operating costs, and ease integration. These all contribute to cheaper and more predictable energy from wind. But realising the value of data requires a digital transformation that brings
grand challengesaround data, culture, and coopetition. This paper describes how the wind energy industry could work with R&D organisations, funding agencies, and others to overcome them.
Florian Hammer, Sarah Barber, Sebastian Remmler, Federico Bernardoni, Kartik Venkatraman, Gustavo A. Díez Sánchez, Alain Schubiger, Trond-Ola Hågbo, Sophia Buckingham, and Knut Erik Giljarhus
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-114, https://doi.org/10.5194/wes-2022-114, 2023
Preprint withdrawn
Short summary
Short summary
We further enhanced a knowledge base for choosing the most optimal wind resource assessment tool. For this, we compared different simulation tools for the Perdigão site in Portugal, in terms of accuracy and costs. In total five different simulation tools were compared. We found that with a high degree of automatisation and a high experience level of the modeller a cost effective and accurate prediction based on RANS could be achieved. LES simulations are still mainly reserved for academia.
Andrew Clifton, Sarah Barber, Alexander Stökl, Helmut Frank, and Timo Karlsson
Wind Energ. Sci., 7, 2231–2254, https://doi.org/10.5194/wes-7-2231-2022, https://doi.org/10.5194/wes-7-2231-2022, 2022
Short summary
Short summary
The transition to low-carbon sources of energy means that wind turbines will need to be built in hilly or mountainous regions or in places affected by icing. These locations are called
complexand are hard to develop. This paper sets out the research and development (R&D) needed to make it easier and cheaper to harness wind energy there. This includes collaborative R&D facilities, improved wind and weather models, frameworks for sharing data, and a clear definition of site complexity.
Gianluca De Fezza and Sarah Barber
Wind Energ. Sci., 7, 1627–1640, https://doi.org/10.5194/wes-7-1627-2022, https://doi.org/10.5194/wes-7-1627-2022, 2022
Short summary
Short summary
As part of a master's thesis, this study analysed the aerodynamic performance of a multi-element airfoil using numerical flow simulations. The results show that these types of airfoil are very suitable for an upcoming wind energy generation concept. The parametric study of the wing led to a significant improvement of up to 46.6 % compared to the baseline design. The increased power output of the energy generation concept contributes substantially to today's energy transition.
Sarah Barber, Alain Schubiger, Sara Koller, Dominik Eggli, Alexander Radi, Andreas Rumpf, and Hermann Knaus
Wind Energ. Sci., 7, 1503–1525, https://doi.org/10.5194/wes-7-1503-2022, https://doi.org/10.5194/wes-7-1503-2022, 2022
Short summary
Short summary
In this work, a range of simulations are carried out with seven different wind modelling tools at five different complex terrain sites and the results compared to wind speed measurements at validation locations. This is then extended to annual energy production (AEP) estimations (without wake effects), showing that wind profile prediction accuracy does not translate directly or linearly to AEP accuracy. It is therefore vital to consider overall AEP when evaluating simulation accuracies.
Sarah Barber, Julien Deparday, Yuriy Marykovskiy, Eleni Chatzi, Imad Abdallah, Gregory Duthé, Michele Magno, Tommaso Polonelli, Raphael Fischer, and Hanna Müller
Wind Energ. Sci., 7, 1383–1398, https://doi.org/10.5194/wes-7-1383-2022, https://doi.org/10.5194/wes-7-1383-2022, 2022
Short summary
Short summary
Aerodynamic and acoustic field measurements on operating large-scale wind turbines are key for the further reduction in the costs of wind energy. In this work, a novel cost-effective MEMS (micro-electromechanical systems)-based aerodynamic and acoustic wireless measurement system that is thin, non-intrusive, easy to install, low power and self-sustaining is designed and tested.
Cited articles
Ansumali, S. and Karlin, I. V.: Stabilization of the lattice Boltzmann method
by the H theorem: A numerical test, Phys. Rev. E, 62, 7999, https://doi.org/10.1103/PhysRevE.62.7999, 2000. a
ANSYS: Fluent Theory Guide, available at: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v202/en/flu_th/flu_th.html (last access: 14 May 2020), 2019. a
Asmuth, H., Olivares-Espinosa, H., Nilsson, K., and Ivanell, S.: The Actuator
Line Model in Lattice Boltzmann Frameworks: Numerical Sensitivity and
Computational Performance, J. Phys.: Conf. Ser., 1256, 012022, https://doi.org/10.1088/1742-6596/1256/1/012022, 2019. a, b, c
Barber, S.: Comparison metrics microscale simulation challenge for wind
resource assessment – stage 1, zenodo, https://doi.org/10.5281/zenodo.3743247, 2020. a
Bechmann, A.: WAsP CFD A new beginning in wind resource assessment, Tech. rep., Riso National Laboratory, Denmark, 2012. a
Bechmann, A. and Sørensen, N. N.: Hybrid RANS/LES method for wind flow over complex terrain, Wind Energy, 13, 36–50, 2010. a
Bechmann, A., Sørensen, N. N., Berg, J., Mann, J., and Réthoré,
P.-E.: The Bolund experiment, part II: blind comparison of microscale flow
models, Bound.-Lay. Meteorol., 141, 245, https://doi.org/10.1007/s10546-011-9637-x, 2011. a, b, c, d
Berg, J. and Kelly, M. C.: Atmospheric turbulence modelling, synthesis, and simulation, edited by: Veers, P., in: Wind Energy Modeling and Simulation: Volume 1: Atmosphere and Plant (Vol. 1, pp. 183-216), Institution of Engineering and Technology, https://doi.org/10.1049/pbpo125f_ch5, 2019. a
Bhatnagar, P. L., Gross, E. P., and Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 511–525, 1954. a
Blocken, B., Stathopoulos, T., and Carmeliet, J.: CFD simulation of the
atmospheric boundary layer: wall function problems, Atmos. Environ., 41, 238–252, 2007. a
Bowen, A. J. and N. G. Mortensen: Exploring the limits of WAsP: the Wind Atlas Analysis and Application Program, Proceedings of the 1996 European Union Wind Energy Conference and Exhibition, Göteborg, Sweden, 20–24 May, 584–587, 1996. a
Castro, F. A., Palma, J., and Lopes, A. S.: Simulation of the Askervein Flow.
Part 1: Reynolds Averaged Navier–Stokes Equations (k epsilon Turbulence
Model), Bound.-Lay. Meteorol., 107, 501–530, 2003. a
Chapman, S., Cowling, T. G., and Burnett, D.: The mathematical theory of
non-uniform gases: an account of the kinetic theory of viscosity, thermal
conduction and diffusion in gases, Cambridge University Press, Cambridge, 1990. a
Davidson, P. A.: Turbulence: an introduction for scientists and engineers,
Oxford University Press, Oxford, 2015. a
Deiterding R. and Wood S. L.: An Adaptive Lattice Boltzmann Method for Predicting Wake Fields Behind Wind Turbines, edited by: Dillmann A., Heller G., Krämer E., Wagner C., and Breitsamter C., in: New Results in Numerical and Experimental Fluid Mechanics X. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 132, Springer, Cham, https://doi.org/10.1007/978-3-319-27279-5_74, 2016. a
DeLeon, R., Sandusky, M., and Senocak, I.: Simulations of turbulent flow over
complex terrain using an immersed-boundary method, Bound.-Lay. Meteorol., 167, 399–420, 2018. a
d'Humieres, D.: Multiple–relaxation–time lattice Boltzmann models in three
dimensions, Philos. T. Roy. Soc. Lond. A, 360, 437–451, 2002. a
Dhunny, A., Lollchund, M., and Rughooputh, S.: Numerical analysis of wind flow patterns over complex hilly terrains: comparison between two commonly used CFD software, Int. J. Global Energ. Issu., 39, 181–203, 2016. a
Diebold, M., Higgins, C., Fang, J., Bechmann, A., and Parlange, M. B.: Flow
over hills: a large-eddy simulation of the Bolund case, Bound.-Lay. Meteorol., 148, 177–194, 2013. a
Ferreira, A., Lopes, A., Viegas, D., and Sousa, A.: Experimental and numerical simulation of flow around two-dimensional hills, J. Wind Eng. Industm. Aerodynam., 54, 173–181, 1995. a
Filippova, O., Succi, S., Mazzocco, F., Arrighetti, C., Bella, G., and
Hänel, D.: Multiscale lattice Boltzmann schemes with turbulence modeling,
J. Comput. Phys., 170, 812–829, 2001. a
Izham, M., Fukui, T., and Morinishi, K.: Application of regularized lattice
Boltzmann method for incompressible flow simulation at high Reynolds number
and flow with curved boundary, J. Fluid Sci. Technol., 6, 812–822, 2011. a
Kim, H. G., Patel, V., and Lee, C. M.: Numerical simulation of wind flow over
hilly terrain, J. Wind Eng. Indust. Aerodynam., 87, 45–60, 2000. a
Lange, J., Mann, J., Berg, J., Parvu, D., Kilpatrick, R., Costache, A.,
Chowdhury, J., Siddiqui, K., and Hangan, H.: For wind turbines in complex
terrain, the devil is in the detail, Environ. Res. Lett., 12, 094020, https://doi.org/10.1088/1748-9326/aa81db, 2017. a
Latt, J.: Choice of units in lattice Boltzmann simulations, available at:
http://lbmethod.org/_media/howtos:lbunits.pdf (13 May 2020), 2008. a
Latt, J. and Chopard, B.: Lattice Boltzmann method with regularized
pre-collision distribution functions, Math. Comput. Simul., 72, 165–168, 2006. a
Latt, J., Malaspinasa, O., Kontaxakis D., Parmigiani, A., Lagravaa, D., Brogia, F., Ben Belgacema, M., Thorimbert, Y., Sébastien, L., Li, S., Marson, F., Lemus, J., Kotsalos, C., Conradin, R., Coreixas, C., Petkantchin, R., Raynaud, F., Beny, J., and Chopard, B.: Palabos, parallel lattice Boltzmann solver, FlowKit, Lausanne, Switzerland, 2009. a
Ma, Y. and Liu, H.: Large-eddy simulations of atmospheric flows over complex
terrain using the immersed-boundary method in the Weather Research and
Forecasting Model, Bound.-Lay. Meteorol., 165, 421–445, 2017. a
Malaspinas, O., Chopard, B., and Latt, J.: General regularized boundary
condition for multi-speed lattice Boltzmann models, Comput. Fluids, 49, 29–35, 2011. a
Maurizi, A., Palma, J., and Castro, F.: Numerical simulation of the atmospheric flow in a mountainous region of the North of Portugal, J. Wind
Eng. Indust. Aerodynam., 74, 219–228, 1998. a
Oeverstroem: Oeverstroem/lbm_bolundHill: Palabos flow simulation of Bolund Hill (Version v1.0), Zenodo, https://doi.org/10.5281/zenodo.4063718, 2020.
a
Onodera, N. and Idomura, Y.: Acceleration of Wind Simulation Using Locally Mesh-Refined Lattice Boltzmann Method on GPU-Rich Supercomputers, edited by: Yokota, R. and Wu, W., in: Supercomputing Frontiers. SCFA 2018, Lecture Notes in Computer Science, vol 10776, Springer, Cham, https://doi.org/10.1007/978-3-319-69953-0_8, 2018. a, b
Qian, Y., d'Humieres, D., and Lallemand, P.: Lattice BGK models for
Navier–Stokes equation, Europhys. Lett., 17, 479–484, 1992. a
Succi, S.: The lattice Boltzmann equation: for fluid dynamics and beyond,
Oxford University Press, Oxford, 2001. a
Wang, Y., MacCall, B. T., Hocut, C. M., Zeng, X., and Fernando, H. J.:
Simulation of stratified flows over a ridge using a lattice Boltzmann model,
Environ. Fluid Mech., 1–23, 2018. a
Zhang, C.: Numerical predictions of turbulent recirculating flows with a
κ–ϵ model, J. Wind Eng. Indust. Aerodynam., 51, 177–201, 1994. a
Short summary
A large-eddy simulation using the lattice Boltzmann method (LBM) Palabos framework was implemented to calculate the wind field over the complex terrain of Bolund Hill. The results were compared to Reynolds-averaged Navier–Stokes and detached-eddy simulation (DES) using Ansys Fluent and field measurements. A comparison of the three methods' computational costs has shown that the LBM, even though not yet fully optimised, can perform 5 times faster than DES and lead to reasonably accurate results.
A large-eddy simulation using the lattice Boltzmann method (LBM) Palabos framework was...
Special issue
Altmetrics
Final-revised paper
Preprint