Articles | Volume 7, issue 4
https://doi.org/10.5194/wes-7-1383-2022
https://doi.org/10.5194/wes-7-1383-2022
Research article
 | 
08 Jul 2022
Research article |  | 08 Jul 2022

Development of a wireless, non-intrusive, MEMS-based pressure and acoustic measurement system for large-scale operating wind turbine blades

Sarah Barber, Julien Deparday, Yuriy Marykovskiy, Eleni Chatzi, Imad Abdallah, Gregory Duthé, Michele Magno, Tommaso Polonelli, Raphael Fischer, and Hanna Müller

Related authors

Knowledge engineering for wind energy
Yuriy Marykovskiy, Thomas Clark, Justin Day, Marcus Wiens, Charles Henderson, Julian Quick, Imad Abdallah, Anna Maria Sempreviva, Jean-Paul Calbimonte, Eleni Chatzi, and Sarah Barber
Wind Energ. Sci., 9, 883–917, https://doi.org/10.5194/wes-9-883-2024,https://doi.org/10.5194/wes-9-883-2024, 2024
Short summary
Grand challenges in the digitalisation of wind energy
Andrew Clifton, Sarah Barber, Andrew Bray, Peter Enevoldsen, Jason Fields, Anna Maria Sempreviva, Lindy Williams, Julian Quick, Mike Purdue, Philip Totaro, and Yu Ding
Wind Energ. Sci., 8, 947–974, https://doi.org/10.5194/wes-8-947-2023,https://doi.org/10.5194/wes-8-947-2023, 2023
Short summary
Comparison Metrics Microscale Simulation Challenge for Wind Resource Assessment
Florian Hammer, Sarah Barber, Sebastian Remmler, Federico Bernardoni, Kartik Venkatraman, Gustavo A. Díez Sánchez, Alain Schubiger, Trond-Ola Hågbo, Sophia Buckingham, and Knut Erik Giljarhus
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-114,https://doi.org/10.5194/wes-2022-114, 2023
Preprint withdrawn
Short summary
Research challenges and needs for the deployment of wind energy in hilly and mountainous regions
Andrew Clifton, Sarah Barber, Alexander Stökl, Helmut Frank, and Timo Karlsson
Wind Energ. Sci., 7, 2231–2254, https://doi.org/10.5194/wes-7-2231-2022,https://doi.org/10.5194/wes-7-2231-2022, 2022
Short summary
Parameter analysis of a multi-element airfoil for application to airborne wind energy
Gianluca De Fezza and Sarah Barber
Wind Energ. Sci., 7, 1627–1640, https://doi.org/10.5194/wes-7-1627-2022,https://doi.org/10.5194/wes-7-1627-2022, 2022
Short summary

Related subject area

Thematic area: Fluid mechanics | Topic: Wind turbine aerodynamics
Wind turbine rotors in surge motion: new insights into unsteady aerodynamics of floating offshore wind turbines (FOWTs) from experiments and simulations
Christian W. Schulz, Stefan Netzband, Umut Özinan, Po Wen Cheng, and Moustafa Abdel-Maksoud
Wind Energ. Sci., 9, 665–695, https://doi.org/10.5194/wes-9-665-2024,https://doi.org/10.5194/wes-9-665-2024, 2024
Short summary
An insight into the capability of the actuator line method to resolve tip vortices
Pier Francesco Melani, Omar Sherif Mohamed, Stefano Cioni, Francesco Balduzzi, and Alessandro Bianchini
Wind Energ. Sci., 9, 601–622, https://doi.org/10.5194/wes-9-601-2024,https://doi.org/10.5194/wes-9-601-2024, 2024
Short summary
Aerodynamic model comparison for an X-shaped vertical-axis wind turbine
Adhyanth Giri Ajay, Laurence Morgan, Yan Wu, David Bretos, Aurelio Cascales, Oscar Pires, and Carlos Ferreira
Wind Energ. Sci., 9, 453–470, https://doi.org/10.5194/wes-9-453-2024,https://doi.org/10.5194/wes-9-453-2024, 2024
Short summary
Aerodynamic characterisation of a thrust-scaled IEA 15 MW wind turbine model: Experimental insights using PIV data
Erik Fritz, André Ribeiro, Koen Boorsma, and Carlos Ferreira
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-3,https://doi.org/10.5194/wes-2024-3, 2024
Revised manuscript accepted for WES
Short summary
Development and application of a mesh generator intended for unsteady vortex-lattice method simulations of wind turbines and wind farms
Bruno A. Roccia, Luis R. Ceballos, Marcos L. Verstraete, and Cristian G. Gebhardt
Wind Energ. Sci., 9, 385–416, https://doi.org/10.5194/wes-9-385-2024,https://doi.org/10.5194/wes-9-385-2024, 2024
Short summary

Cited articles

Barber, S. and Nordborg, H.: Comparison of simulations and wind tunnel measurements for the improvement of design tools for Vertical Axis Wind Turbines, J. Phys.-Conf. Ser., 1102, 012002, https://doi.org/10.1088/1742-6596/1102/1/012002, 2018. a
Cacciola, S., Agud, I. M., and Bottasso, C.: Detection of rotor imbalance, including root cause, severity and location, J. Phys.-Conf. Ser., 753, 072003, https://doi.org/10.1088/1742-6596/753/7/072003, 2016. a
Chen, X., Eder, M. A., Shihavuddin, A., and Zheng, D.: A human-cyber-physical system toward intelligent wind turbine operation and maintenance, Sustainability, 13, 561, https://doi.org/10.3390/su13020561, 2021. a, b
Clark, T., Barber, S., Deparday, J., Marykovskiy, Y., Chatzi, E., Abdallah, I., Duthé, G., Magno, M., Polonelli, T., Fischer, R., and Müller, H.: Aerosense Digital Twin tools, GitHub [code], https://github.com/aerosense-ai, last access: 30 June 2022. 
Delafin, P.-L., Nishino, T., Kolios, A., and Wang, L.: Comparison of low-order aerodynamic models and RANS CFD for full scale 3D vertical axis wind turbines, Renew. Energ., 109, 564–575, https://doi.org/10.1016/j.renene.2017.03.065, 2017. a
Download
Short summary
Aerodynamic and acoustic field measurements on operating large-scale wind turbines are key for the further reduction in the costs of wind energy. In this work, a novel cost-effective MEMS (micro-electromechanical systems)-based aerodynamic and acoustic wireless measurement system that is thin, non-intrusive, easy to install, low power and self-sustaining is designed and tested.
Altmetrics
Final-revised paper
Preprint