Articles | Volume 7, issue 4
https://doi.org/10.5194/wes-7-1383-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-1383-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of a wireless, non-intrusive, MEMS-based pressure and acoustic measurement system for large-scale operating wind turbine blades
Institute for Energy Technology, Eastern Switzerland University of Applied Sciences, Oberseestrasse 10, 8640 Rapperswil-Jona, Switzerland
Julien Deparday
Institute for Energy Technology, Eastern Switzerland University of Applied Sciences, Oberseestrasse 10, 8640 Rapperswil-Jona, Switzerland
Yuriy Marykovskiy
Institute for Energy Technology, Eastern Switzerland University of Applied Sciences, Oberseestrasse 10, 8640 Rapperswil-Jona, Switzerland
Eleni Chatzi
Chair of Structural Mechanics and Monitoring (CSMM), ETH Zurich (ETHZ), 8093 Zurich, Switzerland
Chair of Structural Mechanics and Monitoring (CSMM), ETH Zurich (ETHZ), 8093 Zurich, Switzerland
Gregory Duthé
Chair of Structural Mechanics and Monitoring (CSMM), ETH Zurich (ETHZ), 8093 Zurich, Switzerland
Michele Magno
D-ITET, Center for Project-Based Learning (PBL), ETH Zurich (ETHZ), 8092 Zurich, Switzerland
Tommaso Polonelli
D-ITET, Center for Project-Based Learning (PBL), ETH Zurich (ETHZ), 8092 Zurich, Switzerland
Raphael Fischer
D-ITET, Center for Project-Based Learning (PBL), ETH Zurich (ETHZ), 8092 Zurich, Switzerland
Hanna Müller
D-ITET, Center for Project-Based Learning (PBL), ETH Zurich (ETHZ), 8092 Zurich, Switzerland
Related authors
Yuriy Marykovskiy, Thomas Clark, Justin Day, Marcus Wiens, Charles Henderson, Julian Quick, Imad Abdallah, Anna Maria Sempreviva, Jean-Paul Calbimonte, Eleni Chatzi, and Sarah Barber
Wind Energ. Sci., 9, 883–917, https://doi.org/10.5194/wes-9-883-2024, https://doi.org/10.5194/wes-9-883-2024, 2024
Short summary
Short summary
This paper delves into the crucial task of transforming raw data into actionable knowledge which can be used by advanced artificial intelligence systems – a challenge that spans various domains, industries, and scientific fields amid their digital transformation journey. This article underscores the significance of cross-industry collaboration and learning, drawing insights from sectors leading in digitalisation, and provides strategic guidance for further development in this area.
Andrew Clifton, Sarah Barber, Andrew Bray, Peter Enevoldsen, Jason Fields, Anna Maria Sempreviva, Lindy Williams, Julian Quick, Mike Purdue, Philip Totaro, and Yu Ding
Wind Energ. Sci., 8, 947–974, https://doi.org/10.5194/wes-8-947-2023, https://doi.org/10.5194/wes-8-947-2023, 2023
Short summary
Short summary
Wind energy creates huge amounts of data, which can be used to improve plant design, raise efficiency, reduce operating costs, and ease integration. These all contribute to cheaper and more predictable energy from wind. But realising the value of data requires a digital transformation that brings
grand challengesaround data, culture, and coopetition. This paper describes how the wind energy industry could work with R&D organisations, funding agencies, and others to overcome them.
Florian Hammer, Sarah Barber, Sebastian Remmler, Federico Bernardoni, Kartik Venkatraman, Gustavo A. Díez Sánchez, Alain Schubiger, Trond-Ola Hågbo, Sophia Buckingham, and Knut Erik Giljarhus
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-114, https://doi.org/10.5194/wes-2022-114, 2023
Preprint withdrawn
Short summary
Short summary
We further enhanced a knowledge base for choosing the most optimal wind resource assessment tool. For this, we compared different simulation tools for the Perdigão site in Portugal, in terms of accuracy and costs. In total five different simulation tools were compared. We found that with a high degree of automatisation and a high experience level of the modeller a cost effective and accurate prediction based on RANS could be achieved. LES simulations are still mainly reserved for academia.
Andrew Clifton, Sarah Barber, Alexander Stökl, Helmut Frank, and Timo Karlsson
Wind Energ. Sci., 7, 2231–2254, https://doi.org/10.5194/wes-7-2231-2022, https://doi.org/10.5194/wes-7-2231-2022, 2022
Short summary
Short summary
The transition to low-carbon sources of energy means that wind turbines will need to be built in hilly or mountainous regions or in places affected by icing. These locations are called
complexand are hard to develop. This paper sets out the research and development (R&D) needed to make it easier and cheaper to harness wind energy there. This includes collaborative R&D facilities, improved wind and weather models, frameworks for sharing data, and a clear definition of site complexity.
Gianluca De Fezza and Sarah Barber
Wind Energ. Sci., 7, 1627–1640, https://doi.org/10.5194/wes-7-1627-2022, https://doi.org/10.5194/wes-7-1627-2022, 2022
Short summary
Short summary
As part of a master's thesis, this study analysed the aerodynamic performance of a multi-element airfoil using numerical flow simulations. The results show that these types of airfoil are very suitable for an upcoming wind energy generation concept. The parametric study of the wing led to a significant improvement of up to 46.6 % compared to the baseline design. The increased power output of the energy generation concept contributes substantially to today's energy transition.
Sarah Barber, Alain Schubiger, Sara Koller, Dominik Eggli, Alexander Radi, Andreas Rumpf, and Hermann Knaus
Wind Energ. Sci., 7, 1503–1525, https://doi.org/10.5194/wes-7-1503-2022, https://doi.org/10.5194/wes-7-1503-2022, 2022
Short summary
Short summary
In this work, a range of simulations are carried out with seven different wind modelling tools at five different complex terrain sites and the results compared to wind speed measurements at validation locations. This is then extended to annual energy production (AEP) estimations (without wake effects), showing that wind profile prediction accuracy does not translate directly or linearly to AEP accuracy. It is therefore vital to consider overall AEP when evaluating simulation accuracies.
Alain Schubiger, Sarah Barber, and Henrik Nordborg
Wind Energ. Sci., 5, 1507–1519, https://doi.org/10.5194/wes-5-1507-2020, https://doi.org/10.5194/wes-5-1507-2020, 2020
Short summary
Short summary
A large-eddy simulation using the lattice Boltzmann method (LBM) Palabos framework was implemented to calculate the wind field over the complex terrain of Bolund Hill. The results were compared to Reynolds-averaged Navier–Stokes and detached-eddy simulation (DES) using Ansys Fluent and field measurements. A comparison of the three methods' computational costs has shown that the LBM, even though not yet fully optimised, can perform 5 times faster than DES and lead to reasonably accurate results.
Sarah Barber, Alain Schubiger, Natalie Wagenbrenner, Nicolas Fatras, and Henrik Nordborg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-95, https://doi.org/10.5194/wes-2019-95, 2020
Publication in WES not foreseen
Short summary
Short summary
A new method for helping wind modellers choose the most cost-effective model for a given project is developed by applying six different Computational Fluid Dynamics tools to simulate the Bolund Hill experiment and studying appropriate comparison metrics in detail. The results show that this new method is successful, and that it is generally possible to apply it in order to choose the most appropriate model for a given project in advance.
Sarah Barber, Simon Boller, and Henrik Nordborg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-97, https://doi.org/10.5194/wes-2019-97, 2019
Revised manuscript not accepted
Short summary
Short summary
The growing worldwide level of renewable power generation requires innovative solutions to maintain grid reliability and stability. In this work, twelve sites in Switzerland are chosen for a 100 % renewable energy microgrid feasibility study. For all of these sites, a combination of wind and PV performs consistently better than wind only and PV only. Five of the sites are found to be potentially economically viable, if investors would be prepared to make extra investments of 0.05–0.2 $/kWh.
Ana Fernandez-Navamuel, Nicolas Gorostidi, David Pardo, Vincenzo Nava, and Eleni Chatzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-160, https://doi.org/10.5194/wes-2024-160, 2024
Preprint under review for WES
Short summary
Short summary
This work employs Deep Neural Networks to identify damage in the mooring system of a Floating Offshore Wind Turbine (FOWT) using measurements from the platform response. We account for the effect of uncertainty in the assessment estimates caused by the existence of multiple solutions (different damage scenarios can cause the observed data). We describe the damage condition features using a distributional model based on a Gaussian Mixture, which captures the uncertainty in the predictions.
Yuriy Marykovskiy, Thomas Clark, Justin Day, Marcus Wiens, Charles Henderson, Julian Quick, Imad Abdallah, Anna Maria Sempreviva, Jean-Paul Calbimonte, Eleni Chatzi, and Sarah Barber
Wind Energ. Sci., 9, 883–917, https://doi.org/10.5194/wes-9-883-2024, https://doi.org/10.5194/wes-9-883-2024, 2024
Short summary
Short summary
This paper delves into the crucial task of transforming raw data into actionable knowledge which can be used by advanced artificial intelligence systems – a challenge that spans various domains, industries, and scientific fields amid their digital transformation journey. This article underscores the significance of cross-industry collaboration and learning, drawing insights from sectors leading in digitalisation, and provides strategic guidance for further development in this area.
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024, https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Andrea Gamberini and Imad Abdallah
Wind Energ. Sci., 9, 181–201, https://doi.org/10.5194/wes-9-181-2024, https://doi.org/10.5194/wes-9-181-2024, 2024
Short summary
Short summary
Active trailing edge flaps can potentially reduce wind turbine (WT) loads. To monitor their performance, we present two methods based on machine learning that identify flap health states, including degraded performance, in normal power production and idling condition. Both methods rely only on sensors commonly available on WTs. One approach properly detects all the flap states if a fault occurs on only one blade. The other approach can identify two specific flap states in all fault scenarios.
Andrew Clifton, Sarah Barber, Andrew Bray, Peter Enevoldsen, Jason Fields, Anna Maria Sempreviva, Lindy Williams, Julian Quick, Mike Purdue, Philip Totaro, and Yu Ding
Wind Energ. Sci., 8, 947–974, https://doi.org/10.5194/wes-8-947-2023, https://doi.org/10.5194/wes-8-947-2023, 2023
Short summary
Short summary
Wind energy creates huge amounts of data, which can be used to improve plant design, raise efficiency, reduce operating costs, and ease integration. These all contribute to cheaper and more predictable energy from wind. But realising the value of data requires a digital transformation that brings
grand challengesaround data, culture, and coopetition. This paper describes how the wind energy industry could work with R&D organisations, funding agencies, and others to overcome them.
Florian Hammer, Sarah Barber, Sebastian Remmler, Federico Bernardoni, Kartik Venkatraman, Gustavo A. Díez Sánchez, Alain Schubiger, Trond-Ola Hågbo, Sophia Buckingham, and Knut Erik Giljarhus
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-114, https://doi.org/10.5194/wes-2022-114, 2023
Preprint withdrawn
Short summary
Short summary
We further enhanced a knowledge base for choosing the most optimal wind resource assessment tool. For this, we compared different simulation tools for the Perdigão site in Portugal, in terms of accuracy and costs. In total five different simulation tools were compared. We found that with a high degree of automatisation and a high experience level of the modeller a cost effective and accurate prediction based on RANS could be achieved. LES simulations are still mainly reserved for academia.
Andrew Clifton, Sarah Barber, Alexander Stökl, Helmut Frank, and Timo Karlsson
Wind Energ. Sci., 7, 2231–2254, https://doi.org/10.5194/wes-7-2231-2022, https://doi.org/10.5194/wes-7-2231-2022, 2022
Short summary
Short summary
The transition to low-carbon sources of energy means that wind turbines will need to be built in hilly or mountainous regions or in places affected by icing. These locations are called
complexand are hard to develop. This paper sets out the research and development (R&D) needed to make it easier and cheaper to harness wind energy there. This includes collaborative R&D facilities, improved wind and weather models, frameworks for sharing data, and a clear definition of site complexity.
Gianluca De Fezza and Sarah Barber
Wind Energ. Sci., 7, 1627–1640, https://doi.org/10.5194/wes-7-1627-2022, https://doi.org/10.5194/wes-7-1627-2022, 2022
Short summary
Short summary
As part of a master's thesis, this study analysed the aerodynamic performance of a multi-element airfoil using numerical flow simulations. The results show that these types of airfoil are very suitable for an upcoming wind energy generation concept. The parametric study of the wing led to a significant improvement of up to 46.6 % compared to the baseline design. The increased power output of the energy generation concept contributes substantially to today's energy transition.
Sarah Barber, Alain Schubiger, Sara Koller, Dominik Eggli, Alexander Radi, Andreas Rumpf, and Hermann Knaus
Wind Energ. Sci., 7, 1503–1525, https://doi.org/10.5194/wes-7-1503-2022, https://doi.org/10.5194/wes-7-1503-2022, 2022
Short summary
Short summary
In this work, a range of simulations are carried out with seven different wind modelling tools at five different complex terrain sites and the results compared to wind speed measurements at validation locations. This is then extended to annual energy production (AEP) estimations (without wake effects), showing that wind profile prediction accuracy does not translate directly or linearly to AEP accuracy. It is therefore vital to consider overall AEP when evaluating simulation accuracies.
Alain Schubiger, Sarah Barber, and Henrik Nordborg
Wind Energ. Sci., 5, 1507–1519, https://doi.org/10.5194/wes-5-1507-2020, https://doi.org/10.5194/wes-5-1507-2020, 2020
Short summary
Short summary
A large-eddy simulation using the lattice Boltzmann method (LBM) Palabos framework was implemented to calculate the wind field over the complex terrain of Bolund Hill. The results were compared to Reynolds-averaged Navier–Stokes and detached-eddy simulation (DES) using Ansys Fluent and field measurements. A comparison of the three methods' computational costs has shown that the LBM, even though not yet fully optimised, can perform 5 times faster than DES and lead to reasonably accurate results.
Sarah Barber, Alain Schubiger, Natalie Wagenbrenner, Nicolas Fatras, and Henrik Nordborg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-95, https://doi.org/10.5194/wes-2019-95, 2020
Publication in WES not foreseen
Short summary
Short summary
A new method for helping wind modellers choose the most cost-effective model for a given project is developed by applying six different Computational Fluid Dynamics tools to simulate the Bolund Hill experiment and studying appropriate comparison metrics in detail. The results show that this new method is successful, and that it is generally possible to apply it in order to choose the most appropriate model for a given project in advance.
Sarah Barber, Simon Boller, and Henrik Nordborg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-97, https://doi.org/10.5194/wes-2019-97, 2019
Revised manuscript not accepted
Short summary
Short summary
The growing worldwide level of renewable power generation requires innovative solutions to maintain grid reliability and stability. In this work, twelve sites in Switzerland are chosen for a 100 % renewable energy microgrid feasibility study. For all of these sites, a combination of wind and PV performs consistently better than wind only and PV only. Five of the sites are found to be potentially economically viable, if investors would be prepared to make extra investments of 0.05–0.2 $/kWh.
Related subject area
Thematic area: Fluid mechanics | Topic: Wind turbine aerodynamics
Force-partitioning analysis of vortex-induced vibrations of wind turbine tower sections
Investigation of blade flexibility effects on the loads and wake of a 15 MW wind turbine using a flexible actuator line method
On optimizing the sensor spacing for pressure measurements on wind turbine airfoils
Experimental analysis of a horizontal-axis wind turbine with swept blades using PIV data
Characterization of vortex shedding regimes and lock-in response of a wind turbine airfoil with two high-fidelity simulation approaches
Aerodynamic characterisation of a thrust-scaled IEA 15 MW wind turbine model: experimental insights using PIV data
Numerical Analysis of Transonic Flow over the FFA-W3-211 Wind Turbine Tip Airfoil
Going beyond BEM with BEM: an insight into dynamic inflow effects on floating wind turbines
Quantifying the impact of modeling fidelity on different substructure concepts – Part 2: Code-to-code comparison in realistic environmental conditions
Characterization of Dynamic Stall on Large Wind Turbines
Drop-size-dependent effects in leading-edge rain erosion and their impact for erosion-safe mode operation
Wind turbine rotors in surge motion: new insights into unsteady aerodynamics of floating offshore wind turbines (FOWTs) from experiments and simulations
An insight into the capability of the actuator line method to resolve tip vortices
Aerodynamic model comparison for an X-shaped vertical-axis wind turbine
Development and application of a mesh generator intended for unsteady vortex-lattice method simulations of wind turbines and wind farms
An experimental study on the aerodynamic loads of a floating offshore wind turbine under imposed motions
Developing a digital twin framework for wind tunnel testing: validation of turbulent inflow and airfoil load applications
Influence of rotor blade flexibility on the near-wake behavior of the NREL 5 MW wind turbine
Field-data-based validation of an aero-servo-elastic solver for high-fidelity large-eddy simulations of industrial wind turbines
On the significance of rain droplet slowdown and deformation for leading-edge rain erosion
An analytical linear two-dimensional actuator disc model and comparisons with computational fluid dynamics (CFD) simulations
On the characteristics of the wake of a wind turbine undergoing large motions caused by a floating structure: an insight based on experiments and multi-fidelity simulations from the OC6 project Phase III
Forced-motion simulations of vortex-induced vibrations of wind turbine blades – a study of sensitivities
Towards smart blades for vertical axis wind turbines: different airfoil shapes and tip speed ratios
Numerical study of the unsteady blade root aerodynamics of a 2 MW wind turbine equipped with vortex generators
Generalized analytical body force model for actuator disc computations of wind turbines
Nonlinear inviscid aerodynamics of a wind turbine rotor in surge, sway, and yaw motions using a free-wake panel method
OC6 project Phase III: validation of the aerodynamic loading on a wind turbine rotor undergoing large motion caused by a floating support structure
A simple vortex model applied to an idealized rotor in sheared inflow
Comparison of free vortex wake and blade element momentum results against large-eddy simulation results for highly flexible turbines under challenging inflow conditions
Numerical simulations of ice accretion on wind turbine blades: are performance losses due to ice shape or surface roughness?
Progress in the validation of rotor aerodynamic codes using field data
A comparison of dynamic inflow models for the blade element momentum method
Multiple limit cycle amplitudes in high-fidelity predictions of standstill wind turbine blade vibrations
Model tests of a 10 MW semi-submersible floating wind turbine under waves and wind using hybrid method to integrate the rotor thrust and moments
Atmospheric rotating rig testing of a swept blade tip and comparison with multi-fidelity aeroelastic simulations
A WaveNet-based fully stochastic dynamic stall model
Experimental analysis of the dynamic inflow effect due to coherent gusts
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 2: Impact on energy production and turbine lifetime
Wind tunnel investigation of the aerodynamic response of two 15 MW floating wind turbines
Vertical wake deflection for floating wind turbines by differential ballast control
High-fidelity aeroelastic analyses of wind turbines in complex terrain: fluid–structure interaction and aerodynamic modeling
How should the lift and drag forces be calculated from 2-D airfoil data for dihedral or coned wind turbine blades?
Shyam VimalKumar, Delphine De Tavernier, Dominic von Terzi, Marco Belloli, and Axelle Viré
Wind Energ. Sci., 9, 1967–1983, https://doi.org/10.5194/wes-9-1967-2024, https://doi.org/10.5194/wes-9-1967-2024, 2024
Short summary
Short summary
When standing still without a nacelle or blades, the vibrations on a wind turbine tower are of concern to its structural health. This study finds that the air which flows around the tower recirculates behind the tower, forming so-called wakes. These wakes initiate the vibration, and the movement itself causes the vibration to increase or decrease depending on the wind speed. The current study uses a methodology called force partitioning to analyse this in depth.
Francois Trigaux, Philippe Chatelain, and Grégoire Winckelmans
Wind Energ. Sci., 9, 1765–1789, https://doi.org/10.5194/wes-9-1765-2024, https://doi.org/10.5194/wes-9-1765-2024, 2024
Short summary
Short summary
In this research, the impact of blade flexibility is investigated for a very large wind turbine using numerical simulations. It is shown that bending and torsion decrease the power production and affect aerodynamic loads. Blade deformation also affects the flow of wind behind the turbine, resulting in a higher mean velocity. Our study highlights the importance of including blade flexibility in the simulation of large wind turbines to obtain accurate power and load predictions.
Erik K. Fritz, Christopher L. Kelley, and Kenneth A. Brown
Wind Energ. Sci., 9, 1713–1726, https://doi.org/10.5194/wes-9-1713-2024, https://doi.org/10.5194/wes-9-1713-2024, 2024
Short summary
Short summary
This study investigates the benefits of optimizing the spacing of pressure sensors for measurement campaigns on wind turbine blades and airfoils. It is demonstrated that local aerodynamic properties can be estimated considerably more accurately when the sensor layout is optimized compared to commonly used simpler sensor layouts. This has the potential to reduce the number of sensors without losing measurement accuracy and, thus, reduce the instrumentation complexity and experiment cost.
Erik Fritz, Koen Boorsma, and Carlos Ferreira
Wind Energ. Sci., 9, 1617–1629, https://doi.org/10.5194/wes-9-1617-2024, https://doi.org/10.5194/wes-9-1617-2024, 2024
Short summary
Short summary
This study presents results from a wind tunnel experiment on a model wind turbine with swept blades, thus blades curved in the rotor plane. Using a non-intrusive measurement technique, the flow around the turbine blades was measured from which blade-level aerodynamics are derived in post-processing. The detailed experimental database gives insight into swept-blade aerodynamics and has great value in validating numerical tools, which aim at simulating swept wind turbine blades.
Ricardo Fernandez-Aldama, George Papadakis, Oscar Lopez-Garcia, Sergio Avila-Sanchez, Vasilis A. Riziotis, Alvaro Cuerva-Tejero, and Cristobal Gallego-Castillo
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-92, https://doi.org/10.5194/wes-2024-92, 2024
Revised manuscript accepted for WES
Short summary
Short summary
As longer wind turbine blades are designed, concern about vortex-induced vibrations (VIV) grows. This study identifies a new intermittent vortex shedding behaviour through a long-time simulation of a 3D wind turbine airfoil. This finding motivates a novel evaluation of airfoil vibrations at different inflow velocities. Our results show that both 2D and 3D simulations predict similar VIV characteristics during large motions, enhancing our understanding and prediction of VIV in turbine blades.
Erik Fritz, André Ribeiro, Koen Boorsma, and Carlos Ferreira
Wind Energ. Sci., 9, 1173–1187, https://doi.org/10.5194/wes-9-1173-2024, https://doi.org/10.5194/wes-9-1173-2024, 2024
Short summary
Short summary
This study presents results from a wind tunnel experiment on a model wind turbine. Using a non-intrusive measurement technique, the flow around the turbine blades was measured. In post-processing, the blade-level aerodynamics are derived from the measured flow fields. The detailed experimental database has great value in validating numerical tools of varying complexity, which aim at simulating wind turbine aerodynamics as accurately as possible.
Maria Cristina Vitulano, Delphine Anne Marie De Tavernier, Giuliano De Stefano, and Dominic Alexander von Terzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-47, https://doi.org/10.5194/wes-2024-47, 2024
Revised manuscript accepted for WES
Short summary
Short summary
Next-generation wind turbines are the largest rotating machines ever built, experiencing local flow Mach where the incompressibility assumption is violated, and even transonic flow can occur. This study assesses the transonic features over the FFA-W3-211 wind turbine tip airfoil for selected industrial test cases, defines the subsonic-supersonic flow threshold, and evaluates the Reynolds number effects on transonic flow occurrence. Shock wave occurrence is also depicted.
Francesco Papi, Jason Jonkman, Amy Robertson, and Alessandro Bianchini
Wind Energ. Sci., 9, 1069–1088, https://doi.org/10.5194/wes-9-1069-2024, https://doi.org/10.5194/wes-9-1069-2024, 2024
Short summary
Short summary
Blade element momentum (BEM) theory is the backbone of many industry-standard aerodynamic models. However, the analysis of floating offshore wind turbines (FOWTs) introduces new challenges, which could put BEM models to the test. This study systematically compares four aerodynamic models, ranging from BEM to computational fluid dynamics, in an attempt to shed light on the unsteady aerodynamic phenomena that are at stake in FOWTs and whether BEM is able to model them appropriately.
Francesco Papi, Giancarlo Troise, Robert Behrens de Luna, Joseph Saverin, Sebastian Perez-Becker, David Marten, Marie-Laure Ducasse, and Alessandro Bianchini
Wind Energ. Sci., 9, 981–1004, https://doi.org/10.5194/wes-9-981-2024, https://doi.org/10.5194/wes-9-981-2024, 2024
Short summary
Short summary
Wind turbines need to be simulated for thousands of hours to estimate design loads. Mid-fidelity numerical models are typically used for this task to strike a balance between computational cost and accuracy. The considerable displacements of floating wind turbines may be a challenge for some of these models. This paper enhances comprehension of how modeling theories affect floating wind turbine loads by comparing three codes across three turbines, simulated in a real environment.
Hye Rim Kim, Jasson A. Printezis, Jan Dominik Ahrens, Joerg R. Seume, and Lars Wein
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-31, https://doi.org/10.5194/wes-2024-31, 2024
Revised manuscript accepted for WES
Short summary
Short summary
The need of renewable energy, so thus more efficient wind turbines, is ever increasing. Accurate prediction of the performance in the design stage is a necessary. Especially, predicting the dynamic performance of wind turbine in the region where it undergoes highly unsteady flow, is very challenging. We investigated this dynamic performance of an airfoil, which is typical for the mega-structure wind farms, to support the development of more efficient design tools in the future.
Nils Barfknecht and Dominic von Terzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-33, https://doi.org/10.5194/wes-2024-33, 2024
Revised manuscript accepted for WES
Short summary
Short summary
The paper investigates the influence of the rain drop diameter on the formation of erosion damage and its implication for the erosion-safe mode (ESM). By building an erosion damage model that incorporates several drop-size effects, it is found that large droplets are significantly more erosive than small droplets. It is shown that the performance of the ESM is significantly increased when drop-size effects are correctly accounted for. A method to derive optimal ESM strategies is given as well.
Christian W. Schulz, Stefan Netzband, Umut Özinan, Po Wen Cheng, and Moustafa Abdel-Maksoud
Wind Energ. Sci., 9, 665–695, https://doi.org/10.5194/wes-9-665-2024, https://doi.org/10.5194/wes-9-665-2024, 2024
Short summary
Short summary
Understanding the underlying physical phenomena of the aerodynamics of floating offshore wind turbines (FOWTs) is crucial for successful simulations. No consensus has been reached in the research community on which unsteady aerodynamic phenomena are relevant and how much they can influence the loads acting on a FOWT. This work contributes to the understanding and characterisation of such unsteady phenomena using a novel experimental approach and comprehensive numerical investigations.
Pier Francesco Melani, Omar Sherif Mohamed, Stefano Cioni, Francesco Balduzzi, and Alessandro Bianchini
Wind Energ. Sci., 9, 601–622, https://doi.org/10.5194/wes-9-601-2024, https://doi.org/10.5194/wes-9-601-2024, 2024
Short summary
Short summary
The actuator line method (ALM) is a powerful tool for wind turbine simulation but struggles to resolve tip effects. The reason is still unclear. To investigate this, we use advanced angle of attack sampling and vortex tracking techniques to analyze the flow around a NACA0018 finite wing, simulated with ALM and blade-resolved computational fluid dynamics. Results show that the ALM can account for tip effects if the correct angle of attack sampling and force projection strategies are adopted.
Adhyanth Giri Ajay, Laurence Morgan, Yan Wu, David Bretos, Aurelio Cascales, Oscar Pires, and Carlos Ferreira
Wind Energ. Sci., 9, 453–470, https://doi.org/10.5194/wes-9-453-2024, https://doi.org/10.5194/wes-9-453-2024, 2024
Short summary
Short summary
This paper compares six different numerical models to predict the performance of an X-shaped vertical-axis wind turbine, offering insights into how it works in 3D when its blades are fixed at specific angles. The results showed the 3D models here reliably predict the performance while still taking this turbine's complex aerodynamics into account compared to 2D models. Further, these blade angles caused more complexity in predicting the turbine's behaviour, which is highlighted in this paper.
Bruno A. Roccia, Luis R. Ceballos, Marcos L. Verstraete, and Cristian G. Gebhardt
Wind Energ. Sci., 9, 385–416, https://doi.org/10.5194/wes-9-385-2024, https://doi.org/10.5194/wes-9-385-2024, 2024
Short summary
Short summary
In the literature there is a lack of meshing tools when it comes to building aerodynamic grids of wind turbines/farms to be used along with potential flow solvers. In this work, we present a detailed description of the geometric modeling and computational implementation of an interactive mesh generator, named UVLMeshGen, for onshore/offshore wind farms. The work is completed by providing a series of aerodynamic results related to wind turbines/farms to show the capacity of the mesh generator.
Federico Taruffi, Felipe Novais, and Axelle Viré
Wind Energ. Sci., 9, 343–358, https://doi.org/10.5194/wes-9-343-2024, https://doi.org/10.5194/wes-9-343-2024, 2024
Short summary
Short summary
Floating wind turbines are subject to complex aerodynamics that are not yet fully understood. Lab-scale experiments are crucial for capturing these phenomena and validate numerical tools. This paper presents a new wind tunnel experimental setup able to study the response of a wind turbine rotor when subjected to prescribed motions in 6 degrees of freedom. The observed unsteady effects underscore the importance of pursuing research on the impact of floater motions on wind turbine performance.
Rishabh Mishra, Emmanuel Guilmineau, Ingrid Neunaber, and Caroline Braud
Wind Energ. Sci., 9, 235–252, https://doi.org/10.5194/wes-9-235-2024, https://doi.org/10.5194/wes-9-235-2024, 2024
Short summary
Short summary
To investigate the impact of turbulence on aerodynamic forces, we first model turbulent kinetic energy decay theoretically using the Taylor length scale and employ this model to create a digital wind tunnel replica for simulating grid-generated turbulence. Experimental validation shows good alignment among theory, simulations, and experiments, paving the way for aerodynamic simulations. Finally, we successfully use the digital replica to obtain force coefficients for a 2D rotor blade section.
Leo Höning, Laura J. Lukassen, Bernhard Stoevesandt, and Iván Herráez
Wind Energ. Sci., 9, 203–218, https://doi.org/10.5194/wes-9-203-2024, https://doi.org/10.5194/wes-9-203-2024, 2024
Short summary
Short summary
This study analyzes the impact of wind turbine rotor blade flexibility on the aerodynamic loading of the blades and the consequential wind characteristics in the near wake of the turbine. It is shown that gravitation leads to rotational periodic fluctuations of blade loading, which directly impacts the trajectory of the blade tip vortex at different rotor blade positions while also resulting in a non-uniform wind velocity deficit in the wake of the wind turbine.
Etienne Muller, Simone Gremmo, Félix Houtin-Mongrolle, Bastien Duboc, and Pierre Bénard
Wind Energ. Sci., 9, 25–48, https://doi.org/10.5194/wes-9-25-2024, https://doi.org/10.5194/wes-9-25-2024, 2024
Short summary
Short summary
This article presents an advanced tool designed for the high-fidelity and high-performance simulation of operating wind turbines, allowing for instance the computation of a blade deformation, as well as of the surrounding airflow. As this tool relies on coupling two existing codes, the coupling strategy is first described in depth. The article then compares the code results to field data for validation.
Nils Barfknecht and Dominic von Terzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-169, https://doi.org/10.5194/wes-2023-169, 2023
Revised manuscript accepted for WES
Short summary
Short summary
Rain droplets damage wind turbine blades due to the high impact speed at the tip. In this study, it is found that rain droplets and wind turbine blades interact aerodynamically. The rain droplets slow down and deform close to the blade. A model from another field of study was adapted and validated to study this process in detail. This effect reduced the predicted erosion damage by up to 50 %, primarily affecting smaller drops. It is shown how the slowdown effect can influence erosion mitigation.
Helge Aagaard Madsen
Wind Energ. Sci., 8, 1853–1872, https://doi.org/10.5194/wes-8-1853-2023, https://doi.org/10.5194/wes-8-1853-2023, 2023
Short summary
Short summary
We present a linear analytical solution for a two-dimensional (2-D) actuator disc (AD) for a plane disc, a yawed disc and a coned disc. Comparisons of the 2-D model with three-dimensional computational fluid dynamics (CFD) AD simulations for a circular yawed disc and with an axis-symmetric CFD simulation of a coned disc show good correlation for the normal velocity component of the disc. This indicates that the 2-D AD model could form the basis for a consistent, simple new rotor induction model.
Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, https://doi.org/10.5194/wes-8-1659-2023, 2023
Short summary
Short summary
Simulations of different fidelities made by the participants of the OC6 project Phase III are compared to wind tunnel wake measurements on a floating wind turbine. Results in the near wake confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the reduced frequency exceeds 0.5. In the far wake, the impact of platform motion is overestimated by simulations and even seems to be oriented to the generation of a wake less prone to dissipation.
Christian Grinderslev, Felix Houtin-Mongrolle, Niels Nørmark Sørensen, Georg Raimund Pirrung, Pim Jacobs, Aqeel Ahmed, and Bastien Duboc
Wind Energ. Sci., 8, 1625–1638, https://doi.org/10.5194/wes-8-1625-2023, https://doi.org/10.5194/wes-8-1625-2023, 2023
Short summary
Short summary
In standstill conditions wind turbines are at risk of vortex-induced vibrations (VIVs). VIVs can become large and lead to significant fatigue of the wind turbine structure over time. Thus it is important to have tools that can accurately compute this complex phenomenon. This paper studies the sensitivities to the chosen models of computational fluid dynamics (CFD) simulations when modelling VIVs and finds that much care is needed when setting up simulations, especially for specific flow angles.
Mohammad Rasoul Tirandaz, Abdolrahim Rezaeiha, and Daniel Micallef
Wind Energ. Sci., 8, 1403–1424, https://doi.org/10.5194/wes-8-1403-2023, https://doi.org/10.5194/wes-8-1403-2023, 2023
Short summary
Short summary
Vertical axis wind turbines experience a variation of torque and power throughout their rotation. Traditional non-morphing blades are intrinsically not able to respond to this variation, resulting in a turbine which has suboptimal performance. In principle, it is possible to have a morphing blade that adapts to the blade's rotation and changes its geometry in such a way as to optimise the performance of the turbine. This paper addresses the question of how such blade should morph as it rotates.
Ferdinand Seel, Thorsten Lutz, and Ewald Krämer
Wind Energ. Sci., 8, 1369–1385, https://doi.org/10.5194/wes-8-1369-2023, https://doi.org/10.5194/wes-8-1369-2023, 2023
Short summary
Short summary
Vortex generators are evaluated on a 2 MW wind turbine rotor blade by computational fluid dynamic methods. Those devices delay flow separation on the airfoils and thus increase their efficiency. On the wind turbine blade, rotational phenomena (e.g. rotational augmentation) appear and interact with the vortices from the vortex generators. The understanding of those interactions is crucial in order to optimise the placement of the vortex generators and evaluate their real efficiency on the blade.
Jens N. Sørensen
Wind Energ. Sci., 8, 1017–1027, https://doi.org/10.5194/wes-8-1017-2023, https://doi.org/10.5194/wes-8-1017-2023, 2023
Short summary
Short summary
The paper presents a simple analytical model that, with surprisingly good accuracy, represents the loading for virtually any horizontal axis wind turbine, independent of size and operating regime. The aim of the model is to have a simple tool that may represent the loading of any wind turbine without having access to the details regarding the specific geometry and airfoil data, information that is normally kept confidential by the manufacturer of the turbine.
André F. P. Ribeiro, Damiano Casalino, and Carlos S. Ferreira
Wind Energ. Sci., 8, 661–675, https://doi.org/10.5194/wes-8-661-2023, https://doi.org/10.5194/wes-8-661-2023, 2023
Short summary
Short summary
Floating offshore wind turbines move due to not having a rigid foundation. Hence, as the blades rotate they experience more complex aerodynamics than standard onshore wind turbines. In this paper, we show computational simulations of a wind turbine rotor moving in various ways and quantify the effects of the motion in the forces acting on the blades. We show that these forces behave in nonlinear ways in some cases.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Mac Gaunaa, Niels Troldborg, and Emmanuel Branlard
Wind Energ. Sci., 8, 503–513, https://doi.org/10.5194/wes-8-503-2023, https://doi.org/10.5194/wes-8-503-2023, 2023
Short summary
Short summary
We present an analytical vortex model. Despite its simplicity, the model is fully consistent with 1D momentum theory. It shows that the flow through a non-uniformly loaded rotor operating in non-uniform inflow behaves locally as predicted by 1D momentum theory. As a consequence, the local power coefficient (based on local inflow) of an ideal rotor is unaltered by the presence of shear. Finally, the model shows that there is no cross-shear deflection of the wake of a rotor in sheared inflow.
Kelsey Shaler, Benjamin Anderson, Luis A. Martínez-Tossas, Emmanuel Branlard, and Nick Johnson
Wind Energ. Sci., 8, 383–399, https://doi.org/10.5194/wes-8-383-2023, https://doi.org/10.5194/wes-8-383-2023, 2023
Short summary
Short summary
Free-vortex wake (OLAF) and low-fidelity blade-element momentum (BEM) structural results are compared to high-fidelity simulation results for a flexible downwind turbine for varying inflow conditions. Overall, OLAF results were more consistent than BEM results when compared to SOWFA results under challenging inflow conditions. Differences between OLAF and BEM results were dominated by yaw misalignment angle, with varying shear exponent and turbulence intensity causing more subtle differences.
Francesco Caccia and Alberto Guardone
Wind Energ. Sci., 8, 341–362, https://doi.org/10.5194/wes-8-341-2023, https://doi.org/10.5194/wes-8-341-2023, 2023
Short summary
Short summary
Ice roughness deteriorates wind turbine aerodynamics. We have shown numerically that this also occurs when complex ice shapes are present on the leading edge, as long as the blade's wet region extends beyond the ice shape itself and roughness elements are high enough. Such features are typical of icing events on wind turbines but are not captured by current icing simulation tools. Future research should focus on correctly computing both the wet region of the blade and the roughness height.
Koen Boorsma, Gerard Schepers, Helge Aagard Madsen, Georg Pirrung, Niels Sørensen, Galih Bangga, Manfred Imiela, Christian Grinderslev, Alexander Meyer Forsting, Wen Zhong Shen, Alessandro Croce, Stefano Cacciola, Alois Peter Schaffarczyk, Brandon Lobo, Frederic Blondel, Philippe Gilbert, Ronan Boisard, Leo Höning, Luca Greco, Claudio Testa, Emmanuel Branlard, Jason Jonkman, and Ganesh Vijayakumar
Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023, https://doi.org/10.5194/wes-8-211-2023, 2023
Short summary
Short summary
Within the framework of the fourth phase of the International Energy Agency's (IEA) Wind Task 29, a large comparison exercise between measurements and aeroelastic simulations has been carried out. Results were obtained from more than 19 simulation tools of various fidelity, originating from 12 institutes and compared to state-of-the-art field measurements. The result is a unique insight into the current status and accuracy of rotor aerodynamic modeling.
Simone Mancini, Koen Boorsma, Gerard Schepers, and Feike Savenije
Wind Energ. Sci., 8, 193–210, https://doi.org/10.5194/wes-8-193-2023, https://doi.org/10.5194/wes-8-193-2023, 2023
Short summary
Short summary
Modern wind turbines are subject to complex wind conditions that are far from the hypothesis of steady uniform inflow at the core of blade element momentum methods (the current industry standard for wind turbine design). Various corrections have been proposed to model this complexity. The present work focuses on modelling the unsteady evolution of wind turbine wakes (dynamic inflow), comparing the different corrections available and highlighting their effects on design load predictions.
Christian Grinderslev, Niels Nørmark Sørensen, Georg Raimund Pirrung, and Sergio González Horcas
Wind Energ. Sci., 7, 2201–2213, https://doi.org/10.5194/wes-7-2201-2022, https://doi.org/10.5194/wes-7-2201-2022, 2022
Short summary
Short summary
As wind turbines increase in size, the risk of flow-induced instabilities increases. This study investigates the phenomenon of vortex-induced vibrations (VIVs) on a large 10 MW wind turbine blade using two high-fidelity methods. It is found that VIVs can occur with multiple equilibrium states for the same flow case, showing an dependence on the initial conditions. This means that a blade which is stable in a flow can become unstable if, e.g., a turbine operation provokes an initial vibration.
Felipe Vittori, José Azcona, Irene Eguinoa, Oscar Pires, Alberto Rodríguez, Álex Morató, Carlos Garrido, and Cian Desmond
Wind Energ. Sci., 7, 2149–2161, https://doi.org/10.5194/wes-7-2149-2022, https://doi.org/10.5194/wes-7-2149-2022, 2022
Short summary
Short summary
This paper describes the results of a wave tank test campaign of a scaled SATH 10 MW INNWIND floating platform. The software-in-the-loop (SiL) hybrid method was used to include the wind turbine thrust and the in-plane rotor moments. Experimental results are compared with a numerical model developed in OpenFAST of the floating wind turbine. The results are discussed, identifying limitations of the numerical models and obtaining conclusions on how to improve them.
Thanasis Barlas, Georg Raimund Pirrung, Néstor Ramos-García, Sergio González Horcas, Ang Li, and Helge Aagaard Madsen
Wind Energ. Sci., 7, 1957–1973, https://doi.org/10.5194/wes-7-1957-2022, https://doi.org/10.5194/wes-7-1957-2022, 2022
Short summary
Short summary
An aeroelastically optimized curved wind turbine blade tip is designed, manufactured, and tested on a novel outdoor rotating rig facility at the Risø campus of the Technical University of Denmark. Detailed aerodynamic measurements for various atmospheric conditions and results are compared to a series of in-house aeroelastic tools with a range of fidelities in aerodynamic modeling. The comparison highlights details in the ability of the codes to predict the performance of such a curved tip.
Jan-Philipp Küppers and Tamara Reinicke
Wind Energ. Sci., 7, 1889–1903, https://doi.org/10.5194/wes-7-1889-2022, https://doi.org/10.5194/wes-7-1889-2022, 2022
Short summary
Short summary
Airfoils play a major role in the technical harnessing of energy from currents such as wind and water. When the angle of attack of a wing changes dynamically, the forces on the wing often change more than would have been assumed from static measurements alone. Since these dynamic forces have a strong influence, e.g., on the performance of airplanes and wind turbines, a neural-network-based model was created that can predict these loads and their stochastic fluctuations.
Frederik Berger, Lars Neuhaus, David Onnen, Michael Hölling, Gerard Schepers, and Martin Kühn
Wind Energ. Sci., 7, 1827–1846, https://doi.org/10.5194/wes-7-1827-2022, https://doi.org/10.5194/wes-7-1827-2022, 2022
Short summary
Short summary
We proof the dynamic inflow effect due to gusts in wind tunnel experiments with MoWiTO 1.8 in the large wind tunnel of ForWind – University of Oldenburg, where we created coherent gusts with an active grid. The effect is isolated in loads and rotor flow by comparison of a quasi-steady and a dynamic case. The observed effect is not caught by common dynamic inflow engineering models. An improvement to the Øye dynamic inflow model is proposed, matching experiment and corresponding FVWM simulations.
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 1771–1790, https://doi.org/10.5194/wes-7-1771-2022, https://doi.org/10.5194/wes-7-1771-2022, 2022
Short summary
Short summary
A wind turbine blade equipped with root spoilers is analysed using time domain aeroelastic simulations to assess the impact of passive devices on the turbine AEP and lifetime. A novel way to account for aerofoil-generated unsteadiness in the fatigue calculation is proposed and detailed. The outcome shows that spoilers, on average, can increase the AEP of the turbine. However, the structural impacts on the turbine can be severe if not accounted for initially in the turbine design.
Alessandro Fontanella, Alan Facchinetti, Simone Di Carlo, and Marco Belloli
Wind Energ. Sci., 7, 1711–1729, https://doi.org/10.5194/wes-7-1711-2022, https://doi.org/10.5194/wes-7-1711-2022, 2022
Short summary
Short summary
The aerodynamics of floating wind turbines is complicated by large motions permitted by the foundation. The interaction between turbine, wind, and wake is not yet fully understood. The wind tunnel experiments of this paper shed light on the aerodynamic force and wake response of the floating IEA 15 MW turbine subjected to platform motion as would occur during normal operation. This will help future research on turbine and wind farm control.
Emmanouil M. Nanos, Carlo L. Bottasso, Simone Tamaro, Dimitris I. Manolas, and Vasilis A. Riziotis
Wind Energ. Sci., 7, 1641–1660, https://doi.org/10.5194/wes-7-1641-2022, https://doi.org/10.5194/wes-7-1641-2022, 2022
Short summary
Short summary
A novel way of wind farm control is presented where the wake is deflected vertically to reduce interactions with downstream turbines. This is achieved by moving ballast in a floating offshore platform in order to pitch the support structure and thereby tilt the wind turbine rotor disk. The study considers the effects of this new form of wake control on the aerodynamics of the steering and wake-affected turbines, on the structure, and on the ballast motion system.
Giorgia Guma, Philipp Bucher, Patrick Letzgus, Thorsten Lutz, and Roland Wüchner
Wind Energ. Sci., 7, 1421–1439, https://doi.org/10.5194/wes-7-1421-2022, https://doi.org/10.5194/wes-7-1421-2022, 2022
Short summary
Short summary
Wind turbine aeroelasticity is becoming more and more important because turbine sizes are increasingly leading to more slender blades. On the other hand, complex terrains are of interest because they are far away from urban areas. These regions are characterized by low velocities and high turbulence and are mostly influenced by the presence of forest, and that is why it is necessary to develop high-fidelity tools to correctly simulate the wind turbine's response.
Ang Li, Mac Gaunaa, Georg Raimund Pirrung, Alexander Meyer Forsting, and Sergio González Horcas
Wind Energ. Sci., 7, 1341–1365, https://doi.org/10.5194/wes-7-1341-2022, https://doi.org/10.5194/wes-7-1341-2022, 2022
Short summary
Short summary
A consistent method of using two-dimensional airfoil data when using generalized lifting-line methods for the aerodynamic load calculation of non-planar horizontal-axis wind turbines is described. The important conclusions from the unsteady two-dimensional airfoil aerodynamics are highlighted. The impact of using a simplified approach instead of using the full model on the prediction of the aerodynamic performance of non-planar rotors is shown numerically for different aerodynamic models.
Cited articles
Barber, S. and Nordborg, H.: Comparison of simulations and wind tunnel
measurements for the improvement of design tools for Vertical Axis Wind
Turbines, J. Phys.-Conf. Ser., 1102, 012002, https://doi.org/10.1088/1742-6596/1102/1/012002,
2018. a
Cacciola, S., Agud, I. M., and Bottasso, C.: Detection of rotor imbalance,
including root cause, severity and location, J. Phys.-Conf.
Ser., 753, 072003, https://doi.org/10.1088/1742-6596/753/7/072003, 2016. a
Chen, X., Eder, M. A., Shihavuddin, A., and Zheng, D.: A human-cyber-physical
system toward intelligent wind turbine operation and maintenance,
Sustainability, 13, 561, https://doi.org/10.3390/su13020561, 2021. a, b
Clark, T., Barber, S., Deparday, J., Marykovskiy, Y., Chatzi, E., Abdallah, I., Duthé, G., Magno, M., Polonelli, T., Fischer, R., and Müller, H.: Aerosense Digital Twin tools, GitHub [code], https://github.com/aerosense-ai, last access: 30 June 2022.
Delafin, P.-L., Nishino, T., Kolios, A., and Wang, L.: Comparison of low-order
aerodynamic models and RANS CFD for full scale 3D vertical axis wind
turbines, Renew. Energ., 109, 564–575,
https://doi.org/10.1016/j.renene.2017.03.065, 2017. a
De Tavernier, D., Ferreira, C., Viré, A., LeBlanc, B., and Bernardy, S.:
Controlling dynamic stall using vortex generators on a wind turbine airfoil,
Renew. Energ., 172, 1194–1211,
https://doi.org/10.1016/j.renene.2021.03.019, 2021. a
Di Nuzzo, F., Brunelli, D., Polonelli, T., and Benini, L.: Structural Health
Monitoring system With narrowband IoT and MEMS sensors, IEEE S. J.,
21, 16371–16380, https://doi.org/10.1109/JSEN.2021.3075093, 2021. a, b, c, d
Dong, X., Lian, J., Wang, H., Yu, T., and Zhao, Y.: Structural vibration
monitoring and operational modal analysis of offshore wind turbine structure,
Ocean Eng., 150, 280–297, 2018. a
Du, Y., Zhou, S., Jing, X., Peng, Y., Wu, H., and Kwok, N.: Damage detection
techniques for wind turbine blades: A review, Mech. Syst. Signal
Pr., 141, 106445, https://doi.org/10.1016/j.ymssp.2019.106445, 2020. a
Duthé, G., Abdallah, I., Barber, S., and Chatzi, E.: Modeling and
monitoring erosion of the leading edge of wind turbine blades, Energies, 14,
7262, https://doi.org/10.3390/en14217262, 2021. a, b
Esu, O. O., Lloyd, S. D., Flint, J. A., and Watson, S. J.: Feasibility of a
fully autonomous wireless monitoring system for a wind turbine blade,
Renew. Energ., 97, 89–96, 2016. a
Fathima, K. M., Raj, R. S., Prasad, K. R., and Balan, S. G.: MEMS multi sensor
intelligent damage detection for wind turbines by Using IOT, J.
Phys.-Conf. Ser., 1916, 012045, https://doi.org/10.1088/1742-6596/1916/1/012045, 2021. a
Filipský, J., Čížek, J., Wittmeier, F., Kuthada, T., and Meier, S.: Design and First Test of the New Synchronous 200 Hz System for Unsteady Pressure Field Measurement, in: Progress in Vehicle Aerodynamics and Thermal Management, edited by: Wiedemann, J., FKFS 2017, Springer, Cham, https://doi.org/10.1007/978-3-319-67822-1_17, 2018. a
Fischer, R., Mueller, H., Polonelli, T., Benini, L., and Magno, M.: WindNode: A Long-Lasting And Long-Range Bluetooth Wireless Sensor Node for Pressure and Acoustic Monitoring on Wind Turbines, 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), 2021, 393–399, https://doi.org/10.1109/ICPS49255.2021.9468256, 2021. a
Hansen, A. and Butterfield, C.: Aerodynamics of horizontal-axis wind turbines,
Annu. Rev. Fluid Mech., 25, 115–149, 1993. a
He, L., Attia, M., Hao, L., Fang, B., Younsi, K., and Wang, H.: Remote
monitoring and diagnostics of blade health in commercial
MW-scale wind turbines using electrical signature analysis
(ESA), in: 2020 IEEE Energy Conversion Congress and Exposition
(ECCE), 808–813, https://doi.org/10.1109/ECCE44975.2020.9235984, iSSN 2329-3748, 2020. a
Karad, S. and Thakur, R.: Efficient monitoring and control of wind energy
conversion systems using Internet of things (IoT): a comprehensive review,
Environ. Dev. Sustain., 23, 14197–14214,
https://doi.org/10.1007/s10668-021-01267-6, 2021. a
Kingma, D. P. and Welling, M.: Auto-encoding variational bayes, arXiv [preprint], https://doi.org/10.48550/arXiv.1312.6114, 2013. a
Knopp, T., Eisfeld, B., and Calvo, J. B.: A new extension for k−ω
turbulence models to account for wall roughness, Int. J. Heat Fluid Fl., 30, 54–65, 2009. a
Kusnick, J., Adams, D. E., and Griffith, D. T.: Wind turbine rotor imbalance
detection using nacelle and blade measurements, Wind Energy, 18, 267–276,
https://doi.org/10.1002/we.1696, 2015. a
Langel, C. M., Chow, R., Hurley, O. F., van Dam, C. P., Maniaci, D. C., Ehrmann, R. S., and White, E. B.: Analysis of the Impact of Leading Edge Surface Degradation on Wind Turbine Performance, Symposium, AIAA/ASME Wind Energy Symposium 2015, Kissimmee, FL, 5–9 January, 2015,
https://www.osti.gov/biblio/1323041 (last access: 6 July 2022), 2015. a
Larsson, C. and Öhlund, O.: Amplitude modulation of sound from wind
turbines under various meteorological conditions, J.
Acoust. Soc. Am., 135, 67–73, 2014. a
Li, C., Zhu, S., Xu, Y.-l., and Xiao, Y.: 2.5 D large eddy simulation of
vertical axis wind turbine in consideration of high angle of attack flow,
Renew. Energ., 51, 317–330, 2013. a
Lu, L., He, Y., Wang, T., Shi, T., and Ruan, Y.: Wind turbine planetary gearbox
fault diagnosis based on self-powered wireless sensor and deep learning
approach, IEEE Access, 7, 119430–119442, 2019. a
Madsen, H. A., Bertagnolio, F., Fischer, A., Bak, C., and Schmidt Paulsen, U.: A novel full scale
experimental characterization of wind turbine aero-acoustic noise sources – preliminary results, in: Proceedings
of the International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, United States, 10–15 April 2016, https://orbit.dtu.dk/en/publications/a-novel-full-scale-experimental-characterization-of-wind-turbine- (last access: 6 July 2022), 2016. a
Medina, P., Singh, M., Johansen, J., Rivera Jove, A., Machefaux, E.,
Fingersh, L., and Shreck, S.: Aerodynamic and performance measurements on a
SWT-2.3-101 wind turbine, WINDPOWER 2011,
Anaheim, California,
22–25 May 2011, 1–11, https://www.osti.gov/biblio/1029020 (last access: 6 July 2022), 2011. a, b
Nielsen, M. S., Nikolov, I., Kruse, E. K., Garnæs, J., and Madsen, C. B.: High-Resolution Structure-from-Motion for Quantitative Measurement of Leading-Edge Roughness, Energies, 13, 3916, https://doi.org/10.3390/en13153916,
2020. a
Oerlemans, S. and Schepers, J. G.: Prediction of wind turbine noise and
validation against experiment, Int. J. Aeroacoust., 8,
555–584, 2009. a
Oliveira, G., Magalhães, F., Cunha, A., and Caetano, E.: Vibration-based
damage detection in a wind turbine using 1 year of data, Struct. Control
Hlth., 25, e2238, https://doi.org/10.1002/stc.2238, 2018. a
Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and Battaglia, P. W.: Learning
mesh-based simulation with graph networks, arXiv [preprint], https://doi.org/10.48550/i.org/10.48550/arXiv.2010.03409,
2020. a
Qi, C. R., Su, H., Mo, K., and Guibas, L. J.: Pointnet: Deep learning on point
sets for 3d classification and segmentation, arXiv [preprint], https://doi.org/10.48550/arXiv.1612.00593, 2017. a
Qu, F., Liu, J., Zhu, H., and Zang, D.: Wind turbine condition monitoring based
on assembled multidimensional membership functions using fuzzy inference
system, IEEE T. Ind. Inform., 16, 4028–4037, 2019. a
Raab, C. and Rohde-Brandenburger, K.: In-Flight Testing of MEMS Pressure Sensors for Flight Loads Determination, AIAA 2020-0512, AIAA Scitech 2020 Forum, https://doi.org/10.2514/6.2020-0512, 2020. a
Ramesh, K.: On the leading-edge suction and stagnation-point location in unsteady flows past thin aerofoils, J. Fluid Mech., 886, A13, https://doi.org/10.1017/jfm.2019.1070, 2020. a
Rossander, M., Dyachuk, E., Apelfröjd, S., Trolin, K., Goude, A., Bernhoff,
H., and Eriksson, S.: Evaluation of a blade force measurement system for a
vertical axis wind turbine using load cells, Energies, 8, 5973–5996, 2015. a
Saini, A. and Gopalarathnam, A.: Leading-Edge flow sensing for aerodynamic
parameter estimation, AIAA J., 56, 4706–4718, https://doi.org/10.2514/1.J057327,
2018. a
Sareen, A., Sapre, C. A., and Selig, M. S.: Effects of leading edge erosion on
wind turbine blade performance, Wind Energy, 17, 1531–1542, 2014. a
Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G.: The
graph neural network model, IEEE T. Neural Networ., 20, 61–80,
2008. a
Schepers, G.: Engineering models in wind energy aerodynamics: Development,
implementation and analysis using dedicated aerodynamic measurements, PhD thesis, TU Delft,
https://doi.org/10.4233/uuid:92123c07-cc12-4945-973f-103bd744ec87, 2012. a
Schepers, J. G. and Schreck, S. J.: Aerodynamic measurements on wind turbines,
Wires Energy Environ., 8, e320,
https://doi.org/10.1002/wene.320, 2019. a
Selig, M. S.: UIUC airfoil data site,
https://m-selig.ae.illinois.edu/ads.html (last access: 30 June 2022), 1996. a
Shihavuddin, A. S. M., Chen, X., Fedorov, V., Nymark Christensen, A., Andre
Brogaard Riis, N., Branner, K., Bjorholm Dahl, A., and Reinhold Paulsen, R.:
Wind turbine surface damage detection by deep learning aided
drone inspection analysis, Energies, 12, 676, https://doi.org/10.3390/en12040676, 2019. a
Skrimpas, G. A., Kleani, K., Mijatovic, N., Sweeney, C. W., Jensen, B. B., and
Holboell, J.: Detection of icing on wind turbine blades by means of vibration
and power curve analysis, Wind Energy, 19, 1819–1832,
https://doi.org/10.1002/we.1952, 2016. a
Tcherniak, D. and Larsen, G. C.: Application of OMA to an Operating Wind Turbine: now including
Vibration Data from the Blades, in: Proceedings – 5th International Operational Modal Analysis Conference
(IOMAC'13), https://orbit.dtu.dk/en/publications/application-of-oma-to-an-operating-wind-turbine-now-including-vib (last access: 6 July 2022), 2013. a
Tian, Y. and Cotté, B.: Wind turbine noise modeling based on Amiet's
theory: Effects of wind shear and atmospheric turbulence, Acta Acust.
United Ac., 102, 626–639, 2016. a
van Dijk, M. T., van Wingerden, J.-W., Ashuri, T., Li, Y., and Rotea, M. A.:
Yaw-Misalignment and its impact on wind turbine loads and wind farm power
output, J. Phy.-Conf. Ser., 753, 062013,
https://doi.org/10.1088/1742-6596/753/6/062013, 2016. a
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., and Polosukhin, I.: Attention is all you need, in: Advances in
neural information processing systems, edited by: Guyon, I., Von Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., Curran Associates, Inc., 30, 5998–6008, https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf (last access: 6 July 2022), 2017. a
Vimalakanthan, K., Schepers, J., Shen, W., Rahimi, H., Micallef, D., Ferreira,
C. S., Jost, E., and Klein, L.: Evaluation of different methods of
determining the angle of attack on wind turbine blades under yawed inflow
conditions, J. Phys.-Conf. Ser., 1037, 022028,
https://doi.org/10.1088/1742-6596/1037/2/022028, 2018.
a
Weijtjens, W., Verbelen, T., Sitter, G. D., and Devriendt, C.: Foundation
structural health monitoring of an offshore wind turbine at full-scale case
study, Struct. Health Monit., 15, 389–402, 2016. a
Wondra, B., Malek, S., Botz, M., Glaser, S. D., and Grosse, C. U.: Wireless
high-resolution acceleration measurements for Structural Health Monitoring of
wind turbine towers, Data-Enabled Discovery and Applications, 3, 4, https://doi.org/10.1007/s41688-018-0029-y, 2019. a
Wu, G., Zhang, L., and Yang, K.: Development and validation of aerodynamic
measurement on a Horizontal Axis Wind Turbine in the field, Appl. Sci.,
9, 482, https://doi.org/10.3390/app9030482, 2019. a, b
Zhu, C., Qiu, Y., Feng, Y., Wang, T., and Li, H.: Combined effect of passive
vortex generators and leading-edge roughness on dynamic stall of the wind
turbine airfoil, Energ. Convers. Manage., 251, 115015,
https://doi.org/10.1016/j.enconman.2021.115015, 2022. a
Short summary
Aerodynamic and acoustic field measurements on operating large-scale wind turbines are key for the further reduction in the costs of wind energy. In this work, a novel cost-effective MEMS (micro-electromechanical systems)-based aerodynamic and acoustic wireless measurement system that is thin, non-intrusive, easy to install, low power and self-sustaining is designed and tested.
Aerodynamic and acoustic field measurements on operating large-scale wind turbines are key for...
Altmetrics
Final-revised paper
Preprint