Articles | Volume 7, issue 2
Wind Energ. Sci., 7, 697–713, 2022
https://doi.org/10.5194/wes-7-697-2022
Wind Energ. Sci., 7, 697–713, 2022
https://doi.org/10.5194/wes-7-697-2022
Research article
25 Mar 2022
Research article | 25 Mar 2022

A simplified, efficient approach to hybrid wind and solar plant site optimization

Charles Tripp et al.

Related authors

A model to calculate fatigue damage caused by partial waking during wind farm optimization
Andrew P. J. Stanley, Jennifer King, Christopher Bay, and Andrew Ning
Wind Energ. Sci., 7, 433–454, https://doi.org/10.5194/wes-7-433-2022,https://doi.org/10.5194/wes-7-433-2022, 2022
Short summary
Addressing deep array effects and impacts to wake steering with the cumulative-curl wake model
Christopher J. Bay, Paul Fleming, Bart Doekemeijer, Jennifer King, Matt Churchfield, and Rafael Mudafort
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-17,https://doi.org/10.5194/wes-2022-17, 2022
Preprint under review for WES
Short summary
Experimental results of wake steering using fixed angles
Paul Fleming, Michael Sinner, Tom Young, Marine Lannic, Jennifer King, Eric Simley, and Bart Doekemeijer
Wind Energ. Sci., 6, 1521–1531, https://doi.org/10.5194/wes-6-1521-2021,https://doi.org/10.5194/wes-6-1521-2021, 2021
Short summary
Objective and algorithm considerations when optimizing the number and placement of turbines in a wind power plant
Andrew P. J. Stanley, Owen Roberts, Jennifer King, and Christopher J. Bay
Wind Energ. Sci., 6, 1143–1167, https://doi.org/10.5194/wes-6-1143-2021,https://doi.org/10.5194/wes-6-1143-2021, 2021
Short summary
Design and analysis of a wake model for spatially heterogeneous flow
Alayna Farrell, Jennifer King, Caroline Draxl, Rafael Mudafort, Nicholas Hamilton, Christopher J. Bay, Paul Fleming, and Eric Simley
Wind Energ. Sci., 6, 737–758, https://doi.org/10.5194/wes-6-737-2021,https://doi.org/10.5194/wes-6-737-2021, 2021
Short summary

Related subject area

Design methods, reliability and uncertainty modelling
Efficient Bayesian calibration of aerodynamic wind turbine models using surrogate modeling
Benjamin Sanderse, Vinit V. Dighe, Koen Boorsma, and Gerard Schepers
Wind Energ. Sci., 7, 759–781, https://doi.org/10.5194/wes-7-759-2022,https://doi.org/10.5194/wes-7-759-2022, 2022
Short summary
Fast yaw optimization for wind plant wake steering using Boolean yaw angles
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci., 7, 741–757, https://doi.org/10.5194/wes-7-741-2022,https://doi.org/10.5194/wes-7-741-2022, 2022
Short summary
Influence of wind turbine design parameters on linearized physics-based models in OpenFAST
Jason M. Jonkman, Emmanuel S. P. Branlard, and John P. Jasa
Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022,https://doi.org/10.5194/wes-7-559-2022, 2022
Short summary
Input torque measurements for wind turbine gearboxes using fiber-optic strain sensors
Unai Gutierrez Santiago, Alfredo Fernández Sisón, Henk Polinder, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 505–521, https://doi.org/10.5194/wes-7-505-2022,https://doi.org/10.5194/wes-7-505-2022, 2022
Short summary
A model to calculate fatigue damage caused by partial waking during wind farm optimization
Andrew P. J. Stanley, Jennifer King, Christopher Bay, and Andrew Ning
Wind Energ. Sci., 7, 433–454, https://doi.org/10.5194/wes-7-433-2022,https://doi.org/10.5194/wes-7-433-2022, 2022
Short summary

Cited articles

Andrew, G. and Gao, J.: Scalable training of L 1-regularized log-linear models, in: Proceedings of the 24th international conference on Machine learning, 33–40, https://doi.org/10.1145/1273496.1273501, 2007. a
Bendib, B., Belmili, H., and Krim, F.: A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems, Renew. Sustain. Energ. Rev., 45, 637–648, https://doi.org/10.1016/j.rser.2015.02.009, 2015. a
Blair, N. J., DiOrio, N. A., Freeman, J. M., Gilman, P., Janzou, S., Neises, T. W., and Wagner, M. J.: System Advisor Model (SAM) General Description (Version 2017.9.5), US Department of Energy [code], https://doi.org/10.2172/1440404, 2018. a, b
Broyden, C. G.: A class of methods for solving nonlinear simultaneous equations, Math. Comput., 19, 577–593, 1965. a
Chaudhari, C., Kimball, G. M., Hickey, R., and Bourne , B.: Quantification of System-Level Mismatch Losses using PVMismatch, in: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC), 3626–3629, https://doi.org/10.1109/PVSC.2018.8548107, 2018. a
Download
Short summary
Hybrid solar and wind plant layout optimization is a difficult, complex problem. In this paper, we propose a parameterized approach to wind and solar hybrid power plant layout optimization that greatly reduces problem dimensionality while guaranteeing that the generated layouts have a desirable regular structure. We demonstrate that this layout method that generates high-performance, regular layouts which respect hard constraints (e.g., placement restrictions).