Articles | Volume 3, issue 2
Wind Energ. Sci., 3, 845–868, 2018
https://doi.org/10.5194/wes-3-845-2018
Wind Energ. Sci., 3, 845–868, 2018
https://doi.org/10.5194/wes-3-845-2018

Research article 05 Nov 2018

Research article | 05 Nov 2018

Assessing variability of wind speed: comparison and validation of 27 methodologies

Joseph C. Y. Lee et al.

Related authors

An overview of wind-energy-production prediction bias, losses, and uncertainties
Joseph C. Y. Lee and M. Jason Fields
Wind Energ. Sci., 6, 311–365, https://doi.org/10.5194/wes-6-311-2021,https://doi.org/10.5194/wes-6-311-2021, 2021
Short summary
The Power Curve Working Group's assessment of wind turbine power performance prediction methods
Joseph C. Y. Lee, Peter Stuart, Andrew Clifton, M. Jason Fields, Jordan Perr-Sauer, Lindy Williams, Lee Cameron, Taylor Geer, and Paul Housley
Wind Energ. Sci., 5, 199–223, https://doi.org/10.5194/wes-5-199-2020,https://doi.org/10.5194/wes-5-199-2020, 2020
Short summary
OpenOA: An Open-Source Code Base for Operational Analysis of Wind Power Plants
Mike Optis, Jordan Perr-Sauer, Caleb Philips, Anna E. Craig, Joseph C. Y. Lee, Travis Kemper, Shuangwen Sheng, Eric Simley, Lindy Williams, Monte Lunacek, John Meissner, and M. Jason Fields
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-12,https://doi.org/10.5194/wes-2019-12, 2019
Preprint withdrawn
Short summary

Related subject area

Wind and turbulence
The 3 km Norwegian reanalysis (NORA3) – a validation of offshore wind resources in the North Sea and the Norwegian Sea
Ida Marie Solbrekke, Asgeir Sorteberg, and Hilde Haakenstad
Wind Energ. Sci., 6, 1501–1519, https://doi.org/10.5194/wes-6-1501-2021,https://doi.org/10.5194/wes-6-1501-2021, 2021
Short summary
On turbulence models and lidar measurements for wind turbine control
Liang Dong, Wai Hou Lio, and Eric Simley
Wind Energ. Sci., 6, 1491–1500, https://doi.org/10.5194/wes-6-1491-2021,https://doi.org/10.5194/wes-6-1491-2021, 2021
Short summary
Seasonal effects in the long-term correction of short-term wind measurements using reanalysis data
Alexander Basse, Doron Callies, Anselm Grötzner, and Lukas Pauscher
Wind Energ. Sci., 6, 1473–1490, https://doi.org/10.5194/wes-6-1473-2021,https://doi.org/10.5194/wes-6-1473-2021, 2021
Short summary
On the effects of inter-farm interactions at the offshore wind farm Alpha Ventus
Vasilis Pettas, Matthias Kretschmer, Andrew Clifton, and Po Wen Cheng
Wind Energ. Sci., 6, 1455–1472, https://doi.org/10.5194/wes-6-1455-2021,https://doi.org/10.5194/wes-6-1455-2021, 2021
Short summary
Satellite-based estimation of roughness lengths and displacement heights for wind resource modelling
Rogier Floors, Merete Badger, Ib Troen, Kenneth Grogan, and Finn-Hendrik Permien
Wind Energ. Sci., 6, 1379–1400, https://doi.org/10.5194/wes-6-1379-2021,https://doi.org/10.5194/wes-6-1379-2021, 2021
Short summary

Cited articles

Archer, C. L. and Jacobson, M. Z.: Geographical and seasonal variability of the global “practical” wind resources, Appl. Geogr., 45, 119–130, https://doi.org/10.1016/j.apgeog.2013.07.006, 2013. 
Baker, R. W., Walker, S. N., and Wade, J. E.: Annual and seasonal variations in mean wind speed and wind turbine energy production, Sol. Energy, 45, 285–289, https://doi.org/10.1016/0038-092X(90)90013-3, 1990. 
Bandi, M. M. and Apt, J.: Variability of the Wind Turbine Power Curve, Appl. Sci., 6, 262, https://doi.org/10.3390/app6090262, 2016. 
Bett, P. E., Thornton, H. E., and Clark, R. T.: European wind variability over 140 yr, Adv. Sci. Res., 10, 51–58, https://doi.org/10.5194/asr-10-51-2013, 2013. 
Bodini, N., Lundquist, J. K., Zardi, D., and Handschy, M.: Year-to-year correlation, record length, and overconfidence in wind resource assessment, Wind Energ. Sci., 1, 115–128, https://doi.org/10.5194/wes-1-115-2016, 2016. 
Download
Short summary
To find the ideal way to quantify long-term wind-speed variability, we compare 27 metrics using 37 years of wind and energy data. We conclude that the robust coefficient of variation can effectively assess and correlate wind-speed and energy-production variabilities. We derive adequate results via monthly mean data, whereas uncertainty arises in interannual variability calculations. We find that reliable estimates of wind-speed variability require 10 ± 3 years of monthly mean wind data.