Articles | Volume 5, issue 3
Wind Energ. Sci., 5, 1129–1154, 2020

Special issue: Wind Energy Science Conference 2019

Wind Energ. Sci., 5, 1129–1154, 2020

Research article 25 Aug 2020

Research article | 25 Aug 2020

Aeroelastic load validation in wake conditions using nacelle-mounted lidar measurements

Davide Conti et al.

Related authors

Probabilistic estimation of the Dynamic Wake Meandering model parameters using SpinnerLidar-derived wake characteristics
Davide Conti, Nikolay Dimitrov, Alfredo Peña, and Thomas Herges
Wind Energ. Sci., 6, 1117–1142,,, 2021
Short summary
Wind turbine load validation in wakes using wind field reconstruction techniques and nacelle lidar wind retrievals
Davide Conti, Vasilis Pettas, Nikolay Dimitrov, and Alfredo Peña
Wind Energ. Sci., 6, 841–866,,, 2021
Short summary
The fence experiment – full-scale lidar-based shelter observations
Alfredo Peña, Andreas Bechmann, Davide Conti, and Nikolas Angelou
Wind Energ. Sci., 1, 101–114,,, 2016
Short summary

Related subject area

Wind and turbulence
Seasonal effects in the long-term correction of short-term wind measurements using reanalysis data
Alexander Basse, Doron Callies, Anselm Grötzner, and Lukas Pauscher
Wind Energ. Sci., 6, 1473–1490,,, 2021
Short summary
On the effects of inter-farm interactions at the offshore wind farm Alpha Ventus
Vasilis Pettas, Matthias Kretschmer, Andrew Clifton, and Po Wen Cheng
Wind Energ. Sci., 6, 1455–1472,,, 2021
Short summary
Satellite-based estimation of roughness lengths and displacement heights for wind resource modelling
Rogier Floors, Merete Badger, Ib Troen, Kenneth Grogan, and Finn-Hendrik Permien
Wind Energ. Sci., 6, 1379–1400,,, 2021
Short summary
The smoother the better? A comparison of six post-processing methods to improve short-term offshore wind power forecasts in the Baltic Sea
Christoffer Hallgren, Stefan Ivanell, Heiner Körnich, Ville Vakkari, and Erik Sahlée
Wind Energ. Sci., 6, 1205–1226,,, 2021
Short summary
Statistical impact of wind-speed ramp events on turbines, via observations and coupled fluid-dynamic and aeroelastic simulations
Mark Kelly, Søren Juhl Andersen, and Ásta Hannesdóttir
Wind Energ. Sci., 6, 1227–1245,,, 2021
Short summary

Cited articles

Aitken, M. L. and Lundquist, J. K.: Utility-scale wind turbine wake characterization using nacelle-based long-range scanning lidar, J. Atmos. Ocean. Tech., 31, 1529–1539,, 2014. a
Aitken, M. L., Banta, R. M., Pichugina, Y. L., and Lundquist, J. K.: Quantifying wind turbine wake characteristics from scanning remote sensor data, J. Atmos. Ocean. Tech., 31, 765–787,, 2014. a, b
Bingöl, F., Mann, J., and Larsen, G. C.: Light detection and ranging measurements of wake dynamics Part I: One-dimensional Scanning, Wind Energy, 13, 51–61,, 2010. a
Borraccino, A. and Courtney, M.: Calibration report for ZephIR Dual Mode lidar (unit 351), Technical Report DTU Wind Energy E-0088, DTU Wind Energy, Roskilde, Denmark, 2016a. a
Borraccino, A. and Courtney, M.: Calibration report for Avent 5-beam Demonstrator lidar, Technical Report DTU Wind Energy E-0087, DTU Wind Energy, Roskilde, Denmark, 2016b. a
Short summary
We propose a method for carrying out wind turbine load validation in wake conditions using measurements from forward-looking nacelle lidars. The uncertainty of aeroelastic load predictions is quantified against wind turbine on-board sensor data. This work demonstrates the applicability of nacelle-mounted lidar measurements to extend load and power validations under wake conditions and highlights the main challenges.