Journal cover Journal topic
Wind Energy Science The interactive open-access journal of the European Academy of Wind Energy
Journal topic

Journal metrics

Journal metrics

  • CiteScore value: 0.6 CiteScore
    0.6
  • h5-index value: 13 h5-index 13
WES | Articles | Volume 5, issue 1
Wind Energ. Sci., 5, 245–257, 2020
https://doi.org/10.5194/wes-5-245-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Wind Energy Science Conference 2019

Wind Energ. Sci., 5, 245–257, 2020
https://doi.org/10.5194/wes-5-245-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 21 Feb 2020

Research article | 21 Feb 2020

Periodic dynamic induction control of wind farms: proving the potential in simulations and wind tunnel experiments

Joeri Alexis Frederik et al.

Related authors

Field testing of a local wind inflow estimator and wake detector
Johannes Schreiber, Carlo L. Bottasso, and Marta Bertelè
Wind Energ. Sci., 5, 867–884, https://doi.org/10.5194/wes-5-867-2020,https://doi.org/10.5194/wes-5-867-2020, 2020
Short summary
Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy
Bart M. Doekemeijer, Stefan Kern, Sivateja Maturu, Stoyan Kanev, Bastian Salbert, Johannes Schreiber, Filippo Campagnolo, Carlo L. Bottasso, Simone Schuler, Friedrich Wilts, Thomas Neumann, Giancarlo Potenza, Fabio Calabretta, Federico Fioretti, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2020-80,https://doi.org/10.5194/wes-2020-80, 2020
Preprint under review for WES
Short summary
Improving wind farm flow models by learning from operational data
Johannes Schreiber, Carlo L. Bottasso, Bastian Salbert, and Filippo Campagnolo
Wind Energ. Sci., 5, 647–673, https://doi.org/10.5194/wes-5-647-2020,https://doi.org/10.5194/wes-5-647-2020, 2020
Short summary
Wind tunnel testing of wake steering with dynamic wind direction changes
Filippo Campagnolo, Robin Weber, Johannes Schreiber, and Carlo L. Bottasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2020-70,https://doi.org/10.5194/wes-2020-70, 2020
Preprint under review for WES
Short summary
On the scaling of wind turbine rotors
Helena Canet, Pietro Bortolotti, and Carlo L. Bottasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2020-66,https://doi.org/10.5194/wes-2020-66, 2020
Preprint under review for WES
Short summary

Related subject area

Control and system identification
Field testing of a local wind inflow estimator and wake detector
Johannes Schreiber, Carlo L. Bottasso, and Marta Bertelè
Wind Energ. Sci., 5, 867–884, https://doi.org/10.5194/wes-5-867-2020,https://doi.org/10.5194/wes-5-867-2020, 2020
Short summary
Design and analysis of a wake steering controller with wind direction variability
Eric Simley, Paul Fleming, and Jennifer King
Wind Energ. Sci., 5, 451–468, https://doi.org/10.5194/wes-5-451-2020,https://doi.org/10.5194/wes-5-451-2020, 2020
Short summary
Continued Results from a Field Campaign of Wake Steering Applied at a Commercial Wind Farm: Part 2
Paul Fleming, Jennifer King, Eric Simley, Jason Roadman, Andrew Scholbrock, Patrick Murphy, Julie K. Lundquist, Patrick Moriarty, Katherine Fleming, Jeroen van Dam, Christopher Bay, Rafael Mudafort, David Jager, Jason Skopek, Michael Scott, Brady Ryan, Charles Guernsey, and Dan Brake
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-104,https://doi.org/10.5194/wes-2019-104, 2020
Revised manuscript accepted for WES
Short summary
Real-time optimization of wind farms using modifier adaptation and machine learning
Leif Erik Andersson and Lars Imsland
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2020-18,https://doi.org/10.5194/wes-2020-18, 2020
Revised manuscript accepted for WES
Short summary
Uncertainty identification of blade-mounted lidar-based inflow wind speed measurements for robust feedback–feedforward control synthesis
Róbert Ungurán, Vlaho Petrović, Lucy Y. Pao, and Martin Kühn
Wind Energ. Sci., 4, 677–692, https://doi.org/10.5194/wes-4-677-2019,https://doi.org/10.5194/wes-4-677-2019, 2019
Short summary

Cited articles

Annoni, J., Gebraad, P. M., Scholbrock, A. K., Fleming, P. A., and v. Wingerden, J.-W. : Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model, Wind Energy, 19, 1135–1150, 2016. a, b
Annoni, J., Fleming, P., Scholbrock, A., Roadman, J., Dana, S., Adcock, C., Porte-Agel, F., Raach, S., Haizmann, F., and Schlipf, D.: Analysis of control-oriented wake modeling tools using lidar field results, Wind Energ. Sci., 3, 819–831, https://doi.org/10.5194/wes-3-819-2018, 2018. a, b
Bauchau, O. A.: Flexible Multibody Dynamics, in: vol. 176 of Solid Mechanics and its Applications, Springer Netherlands, Dordrecht, Heidelberg, London, New York, https://doi.org/10.1007/978-94-007-0335-3, 2011. a
Bossanyi, E.: The Design of Closed Loop Controllers for Wind Turbines, Wind Energy, 3, 149–163, 2000. a
Bottasso, C. L. and Croce, A.: Cp-Lambda user manual, Tech. rep., Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, Milano, Italy, 2009–2018. a, b
Publications Copernicus
Download
Short summary
The interaction between wind turbines in a wind farm through their wakes is a widely studied research area. Until recently, research was focused on finding constant turbine inputs that optimize the performance of the wind farm. However, recent studies have shown that time-varying, dynamic inputs might be more beneficial. In this paper, the validity of this approach is further investigated by implementing it in scaled wind tunnel experiments and assessing load effects, showing promising results.
The interaction between wind turbines in a wind farm through their wakes is a widely studied...
Citation