Articles | Volume 5, issue 1
https://doi.org/10.5194/wes-5-331-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/wes-5-331-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Radar-derived precipitation climatology for wind turbine blade leading edge erosion
Sibley School of Mechanical and Aerospace Engineering, Cornell
University, Ithaca, New York, USA
Rebecca J. Barthelmie
Department of Earth and Atmospheric Sciences, Cornell University,
Ithaca, New York, USA
Sibley School of Mechanical and Aerospace Engineering, Cornell
University, Ithaca, New York, USA
Related authors
Tristan J. Shepherd, Frederick L. Letson, Rebecca J. Barthelmie, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-373, https://doi.org/10.5194/nhess-2021-373, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
An historic derecho in the US is presented. The 29 June 2012 derecho caused more than 20 deaths and millions of dollars in damage. We use a regional climate model to understand how model fidelity changes under different initial conditions. We find changes drive different convective conditions resulting in a large variation in the simulated hazards. The variation from using different reanalysis data shows that framing these results in the context of contemporary and future climate is a challenge.
Frederick W. Letson, Rebecca J. Barthelmie, Kevin I. Hodges, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 21, 2001–2020, https://doi.org/10.5194/nhess-21-2001-2021, https://doi.org/10.5194/nhess-21-2001-2021, 2021
Short summary
Short summary
Windstorms during the last 40 years in the US Northeast are identified and characterized using the spatial extent of extreme wind speeds at 100 m height from the ERA5 reanalysis. During all of the top 10 windstorms, wind speeds exceeding the local 99.9th percentile cover at least one-third of the land area in this high-population-density region. These 10 storms followed frequently observed cyclone tracks but have intensities 5–10 times the mean values for cyclones affecting this region.
Frederick Letson, Rebecca J. Barthelmie, Weifei Hu, and Sara C. Pryor
Atmos. Chem. Phys., 19, 3797–3819, https://doi.org/10.5194/acp-19-3797-2019, https://doi.org/10.5194/acp-19-3797-2019, 2019
Short summary
Short summary
Wind gusts are a key driver of aerodynamic loading, and common approximations used to describe wind gust behavior may not be appropriate in complex terrain at heights relevant to wind turbines and other structures. High-resolution observations from sonic anemometers and vertically pointing Doppler lidars collected in the Perdigão experiment are analyzed to provide a foundation for improved wind gust characterization in complex terrain.
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Ville Vakkari, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 9, 821–840, https://doi.org/10.5194/wes-9-821-2024, https://doi.org/10.5194/wes-9-821-2024, 2024
Short summary
Short summary
Knowing the wind speed across the rotor of a wind turbine is key in making good predictions of the power production. However, models struggle to capture both the speed and the shape of the wind profile. Using machine learning methods based on the model data, we show that the predictions can be improved drastically. The work focuses on three coastal sites, spread over the Northern Hemisphere (the Baltic Sea, the North Sea, and the US Atlantic coast) with similar results for all sites.
Rebecca Foody, Jacob Coburn, Jeanie A. Aird, Rebecca J. Barthelmie, and Sara C. Pryor
Wind Energ. Sci., 9, 263–280, https://doi.org/10.5194/wes-9-263-2024, https://doi.org/10.5194/wes-9-263-2024, 2024
Short summary
Short summary
Using lidar-derived wind speed measurements at approx. 150 m height at onshore and offshore locations, we quantify the advantages of deploying wind turbines offshore in terms of the amount of electrical power produced and the higher reliability and predictability of the electrical power.
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 8, 1651–1658, https://doi.org/10.5194/wes-8-1651-2023, https://doi.org/10.5194/wes-8-1651-2023, 2023
Short summary
Short summary
Low-level jets (LLJs) are special types of non-ideal wind profiles affecting both wind energy production and loads on a wind turbine. However, among LLJ researchers, there is no consensus regarding which definition to use to identify these profiles. In this work, we compare two different ways of identifying the LLJ – the falloff definition and the shear definition – and argue why the shear definition is better suited to wind energy applications.
Tristan J. Shepherd, Frederick L. Letson, Rebecca J. Barthelmie, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-373, https://doi.org/10.5194/nhess-2021-373, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
An historic derecho in the US is presented. The 29 June 2012 derecho caused more than 20 deaths and millions of dollars in damage. We use a regional climate model to understand how model fidelity changes under different initial conditions. We find changes drive different convective conditions resulting in a large variation in the simulated hazards. The variation from using different reanalysis data shows that framing these results in the context of contemporary and future climate is a challenge.
Jeanie A. Aird, Rebecca J. Barthelmie, Tristan J. Shepherd, and Sara C. Pryor
Wind Energ. Sci., 6, 1015–1030, https://doi.org/10.5194/wes-6-1015-2021, https://doi.org/10.5194/wes-6-1015-2021, 2021
Short summary
Short summary
Low-level jets (LLJs) are pronounced maxima in wind speed profiles affecting wind turbine performance and longevity. We present a climatology of LLJs over Iowa using output from the Weather Research and Forecasting (WRF) model and determine the rotor plane conditions when they occur. LLJ characteristics are highly sensitive to the identification criteria applied, and different (unique) LLJs are extracted with each criterion. LLJ characteristics also vary with different model output resolution.
Frederick W. Letson, Rebecca J. Barthelmie, Kevin I. Hodges, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 21, 2001–2020, https://doi.org/10.5194/nhess-21-2001-2021, https://doi.org/10.5194/nhess-21-2001-2021, 2021
Short summary
Short summary
Windstorms during the last 40 years in the US Northeast are identified and characterized using the spatial extent of extreme wind speeds at 100 m height from the ERA5 reanalysis. During all of the top 10 windstorms, wind speeds exceeding the local 99.9th percentile cover at least one-third of the land area in this high-population-density region. These 10 storms followed frequently observed cyclone tracks but have intensities 5–10 times the mean values for cyclones affecting this region.
Rebecca J. Barthelmie and Sara C. Pryor
Atmos. Meas. Tech., 12, 3463–3484, https://doi.org/10.5194/amt-12-3463-2019, https://doi.org/10.5194/amt-12-3463-2019, 2019
Short summary
Short summary
Wakes are volumes of air with low wind speed that form downwind of wind turbines. Their properties and behaviour determine optimal turbine spacing in wind farms. We use scanning Doppler lidar to accurately and precisely measure wake characteristics at a complex terrain site in Portugal. We develop and apply an automatic processing algorithm to detect wakes and quantify their characteristics. In higher wind speeds, the wake centres are lower. Wake centres are also lower in convective conditions.
Frederick Letson, Rebecca J. Barthelmie, Weifei Hu, and Sara C. Pryor
Atmos. Chem. Phys., 19, 3797–3819, https://doi.org/10.5194/acp-19-3797-2019, https://doi.org/10.5194/acp-19-3797-2019, 2019
Short summary
Short summary
Wind gusts are a key driver of aerodynamic loading, and common approximations used to describe wind gust behavior may not be appropriate in complex terrain at heights relevant to wind turbines and other structures. High-resolution observations from sonic anemometers and vertically pointing Doppler lidars collected in the Perdigão experiment are analyzed to provide a foundation for improved wind gust characterization in complex terrain.
Sara C. Pryor, Tristan J. Shepherd, and Rebecca J. Barthelmie
Wind Energ. Sci., 3, 651–665, https://doi.org/10.5194/wes-3-651-2018, https://doi.org/10.5194/wes-3-651-2018, 2018
Short summary
Short summary
The interannual variability (IAV) of annual energy production (AEP) from wind turbines due to IAV in wind speeds from proposed wind farms plays a key role in dictating project financing but is only poorly constrained. This study provides improved quantification of IAV over eastern N. America using purpose-performed long-term numerical simulations. It may be appropriate to reduce the IAV applied to preconstruction AEP estimates, which would decrease the cost of capital for wind farm developments.
Paula Doubrawa, Alex Montornès, Rebecca J. Barthelmie, Sara C. Pryor, and Pau Casso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2017-61, https://doi.org/10.5194/wes-2017-61, 2018
Preprint withdrawn
Short summary
Short summary
We perform time-resolved, high-resolution simulations of the atmospheric boundary layer with a numerical weather prediction model. The downscaling is done within the model by defining nested domains, and we investigate different ways of treating turbulence modeling at intermediate spatial scales in which traditional turbulence parameterizations are inadequate. We focus on quantities of interest to wind energy and compare the simulations with measurements collected at a complex-terrain site.
Sara C. Pryor, Ryan C. Sullivan, and Justin T. Schoof
Atmos. Chem. Phys., 17, 14457–14471, https://doi.org/10.5194/acp-17-14457-2017, https://doi.org/10.5194/acp-17-14457-2017, 2017
Short summary
Short summary
The air temperature and water vapor content are increasing globally due to the increased concentration of "heat-trapping" (greenhouse) gases. But not all regions are warming at the same rate. This analysis is designed to improve understanding of the causes of recent trends and year-to-year variability in summertime heat indices over the eastern US and to present a new model that can be used to make projections of future events that may cause loss of life and/or decreased human well-being.
Paola Crippa, Ryan C. Sullivan, Abhinav Thota, and Sara C. Pryor
Atmos. Chem. Phys., 17, 1511–1528, https://doi.org/10.5194/acp-17-1511-2017, https://doi.org/10.5194/acp-17-1511-2017, 2017
Short summary
Short summary
Here we quantify WRF-CHEM sensitivity in simulating meteorological, chemical and aerosol properties as a function of spatial resolution.
We demonstrate that WRF-Chem at high resolution improves model performance of meteorological and gas-phase parameters and of mean and extreme aerosol properties over North America. A dry bias in specific humidity and precipitation in the coarse simulations is identified as cause of the better performance of the high-resolution simulations.
H. Wang, R. J. Barthelmie, P. Doubrawa, and S. C. Pryor
Atmos. Meas. Tech., 9, 4123–4139, https://doi.org/10.5194/amt-9-4123-2016, https://doi.org/10.5194/amt-9-4123-2016, 2016
Short summary
Short summary
This paper investigates how long a sampling duration of lidar measurements should be in order to accurately estimate radial velocity variance to obtain turbulence statistics. Using observations and statistical simulations, it is demonstrated that large probe volumes in lidar measurements increase the autocorrelation values, and consequently the uncertainty in radial velocity variance estimates. It is further shown that the random error can exceed 10 % for 30–60 min sampling duration.
Hui Wang, Rebecca J. Barthelmie, Sara C. Pryor, and Gareth. Brown
Atmos. Meas. Tech., 9, 1653–1669, https://doi.org/10.5194/amt-9-1653-2016, https://doi.org/10.5194/amt-9-1653-2016, 2016
P. Crippa, R. C. Sullivan, A. Thota, and S. C. Pryor
Atmos. Chem. Phys., 16, 397–416, https://doi.org/10.5194/acp-16-397-2016, https://doi.org/10.5194/acp-16-397-2016, 2016
Short summary
Short summary
We evaluate the performance of high-resolution simulations of the Weather Research and Forecasting model coupled with Chemistry in capturing spatiotemporal variability of aerosol optical properties by comparison with ground- and space- based remote-sensing observations and investigate causes of model biases. This work contributes to assessing the model's ability to describe drivers of aerosol direct radiative forcing in the contemporary climate and to improving confidence in future projections.
F. Yu, G. Luo, S. C. Pryor, P. R. Pillai, S. H. Lee, J. Ortega, J. J. Schwab, A. G. Hallar, W. R. Leaitch, V. P. Aneja, J. N. Smith, J. T. Walker, O. Hogrefe, and K. L. Demerjian
Atmos. Chem. Phys., 15, 13993–14003, https://doi.org/10.5194/acp-15-13993-2015, https://doi.org/10.5194/acp-15-13993-2015, 2015
Short summary
Short summary
The role of low-volatility organics in new particle formation (NPF) in the atmosphere is assessed. An empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low-volatility organics significantly overpredicts NPF in the summer.
Two different schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America.
S. C. Pryor, K. E. Hornsby, and K. A. Novick
Atmos. Chem. Phys., 14, 11985–11996, https://doi.org/10.5194/acp-14-11985-2014, https://doi.org/10.5194/acp-14-11985-2014, 2014
Short summary
Short summary
What role do forests play in determining the concentration (and composition) of climate-relevant aerosol particles? This study seeks to address two aspects of this question. Firstly, we document high in-canopy removal of recently formed particles. Then we show evidence that growth rates of particles are a function of soil water availability via a reduction in canopy emissions of gases responsible for particle growth to climate-relevant sizes during drought conditions.
J. Ortega, A. Turnipseed, A. B. Guenther, T. G. Karl, D. A. Day, D. Gochis, J. A. Huffman, A. J. Prenni, E. J. T. Levin, S. M. Kreidenweis, P. J. DeMott, Y. Tobo, E. G. Patton, A. Hodzic, Y. Y. Cui, P. C. Harley, R. S. Hornbrook, E. C. Apel, R. K. Monson, A. S. D. Eller, J. P. Greenberg, M. C. Barth, P. Campuzano-Jost, B. B. Palm, J. L. Jimenez, A. C. Aiken, M. K. Dubey, C. Geron, J. Offenberg, M. G. Ryan, P. J. Fornwalt, S. C. Pryor, F. N. Keutsch, J. P. DiGangi, A. W. H. Chan, A. H. Goldstein, G. M. Wolfe, S. Kim, L. Kaser, R. Schnitzhofer, A. Hansel, C. A. Cantrell, R. L. Mauldin, and J. N. Smith
Atmos. Chem. Phys., 14, 6345–6367, https://doi.org/10.5194/acp-14-6345-2014, https://doi.org/10.5194/acp-14-6345-2014, 2014
Related subject area
Design methods, reliability and uncertainty modelling
Effectively using multifidelity optimization for wind turbine design
Efficient Bayesian calibration of aerodynamic wind turbine models using surrogate modeling
Fast yaw optimization for wind plant wake steering using Boolean yaw angles
A simplified, efficient approach to hybrid wind and solar plant site optimization
Influence of wind turbine design parameters on linearized physics-based models in OpenFAST
Input torque measurements for wind turbine gearboxes using fiber-optic strain sensors
A model to calculate fatigue damage caused by partial waking during wind farm optimization
A fully integrated optimization framework for designing a complex geometry offshore wind turbine spar-type floating support structure
Land-based wind turbines with flexible rail-transportable blades – Part 2: 3D finite element design optimization of the rotor blades
Local-thermal-gradient and large-scale-circulation impacts on turbine-height wind speed forecasting over the Columbia River Basin
Evaluation of the impact of active wake control techniques on ultimate loads for a 10 MW wind turbine
Assessing boundary condition and parametric uncertainty in numerical-weather-prediction-modeled, long-term offshore wind speed through machine learning and analog ensemble
What are the benefits of lidar-assisted control in the design of a wind turbine?
Design procedures and experimental verification of an electro-thermal deicing system for wind turbines
Land-based wind turbines with flexible rail-transportable blades – Part 1: Conceptual design and aeroservoelastic performance
Objective and algorithm considerations when optimizing the number and placement of turbines in a wind power plant
Aeroelastic loads on a 10 MW turbine exposed to extreme events selected from a year-long large-eddy simulation over the North Sea
Optimal scheduling of the next preventive maintenance activity for a wind farm
A method for preliminary rotor design – Part 1: Radially Independent Actuator Disc model
A method for preliminary rotor design – Part 2: Wind turbine Optimization with Radial Independence
Wind farm layout optimization using pseudo-gradients
On the scaling of wind turbine rotors
Reducing cost uncertainty in the drivetrain design decision with a focus on the operational phase
Feature selection techniques for modelling tower fatigue loads of a wind turbine with neural networks
Wind tunnel comparison of four VAWT configurations to test load-limiting concept and CFD validation
Redesign of an upwind rotor for a downwind configuration: design changes and cost evaluation
Fatigue lifetime calculation of wind turbine blade bearings considering blade-dependent load distribution
Reliability analysis of offshore wind turbine foundations under lateral cyclic loading
Operational-based annual energy production uncertainty: are its components actually uncorrelated?
Change-point detection in wind turbine SCADA data for robust condition monitoring with normal behaviour models
Augmented Kalman filter with a reduced mechanical model to estimate tower loads on a land-based wind turbine: a step towards digital-twin simulations
A surrogate model approach for associating wind farm load variations with turbine failures
New strategies for optimized structural monitoring of wind farms: experimental campaign
Differences in damping of edgewise whirl modes operating an upwind turbine in a downwind configuration
Assessment of a rotor blade extension retrofit as a supplement to the lifetime extension of wind turbines
Is the Blade Element Momentum theory overestimating wind turbine loads? – An aeroelastic comparison between OpenFAST's AeroDyn and QBlade's Lifting-Line Free Vortex Wake method
Development and feasibility study of segment blade test methodology
Analytical model for the power–yaw sensitivity of wind turbines operating in full wake
Wake steering optimization under uncertainty
WESgraph: a graph database for the wind farm domain
Reliability-based design optimization of offshore wind turbine support structures using analytical sensitivities and factorized uncertainty modeling
Optimal relationship between power and design-driving loads for wind turbine rotors using 1-D models
Digitalization of scanning lidar measurement campaign planning
Massive simplification of the wind farm layout optimization problem
System-level design studies for large rotors
Sensitivity analysis of the effect of wind characteristics and turbine properties on wind turbine loads
Performance of non-intrusive uncertainty quantification in the aeroservoelastic simulation of wind turbines
Polynomial chaos to efficiently compute the annual energy production in wind farm layout optimization
Multipoint high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind turbine
Comparison between upwind and downwind designs of a 10 MW wind turbine rotor
John Jasa, Pietro Bortolotti, Daniel Zalkind, and Garrett Barter
Wind Energ. Sci., 7, 991–1006, https://doi.org/10.5194/wes-7-991-2022, https://doi.org/10.5194/wes-7-991-2022, 2022
Short summary
Short summary
Using highly accurate simulations within a design cycle is prohibitively computationally expensive. We implement and present a multifidelity optimization method and showcase its efficacy using three different case studies. We examine aerodynamic blade design, turbine controls tuning, and a wind plant layout problem. In each case, the multifidelity method finds an optimal design that performs better than those obtained using simplified models but at a lower cost than high-fidelity optimization.
Benjamin Sanderse, Vinit V. Dighe, Koen Boorsma, and Gerard Schepers
Wind Energ. Sci., 7, 759–781, https://doi.org/10.5194/wes-7-759-2022, https://doi.org/10.5194/wes-7-759-2022, 2022
Short summary
Short summary
An accurate prediction of loads and power of an offshore wind turbine is needed for an optimal design. However, such predictions are typically performed with engineering models that contain many inaccuracies and uncertainties. In this paper we have proposed a systematic approach to quantify and calibrate these uncertainties based on two experimental datasets. The calibrated models are much closer to the experimental data and are equipped with an estimate of the uncertainty in the predictions.
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci., 7, 741–757, https://doi.org/10.5194/wes-7-741-2022, https://doi.org/10.5194/wes-7-741-2022, 2022
Short summary
Short summary
In wind plants, turbines can be yawed to steer their wakes away from downstream turbines and achieve an increase in plant power. The yaw angles become expensive to solve for in large farms. This paper presents a new method to solve for the optimal turbine yaw angles in a wind plant. The yaw angles are defined as Boolean variables – each turbine is either yawed or nonyawed. With this formulation, most of the gains from wake steering can be reached with a large reduction in computational expense.
Charles Tripp, Darice Guittet, Jennifer King, and Aaron Barker
Wind Energ. Sci., 7, 697–713, https://doi.org/10.5194/wes-7-697-2022, https://doi.org/10.5194/wes-7-697-2022, 2022
Short summary
Short summary
Hybrid solar and wind plant layout optimization is a difficult, complex problem. In this paper, we propose a parameterized approach to wind and solar hybrid power plant layout optimization that greatly reduces problem dimensionality while guaranteeing that the generated layouts have a desirable regular structure. We demonstrate that this layout method that generates high-performance, regular layouts which respect hard constraints (e.g., placement restrictions).
Jason M. Jonkman, Emmanuel S. P. Branlard, and John P. Jasa
Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022, https://doi.org/10.5194/wes-7-559-2022, 2022
Short summary
Short summary
This paper summarizes efforts done to understand the impact of design parameter variations in the physical system (e.g., mass, stiffness, geometry, aerodynamic, and hydrodynamic coefficients) on the linearized system using OpenFAST in support of the development of the WEIS toolset to enable controls co-design of floating offshore wind turbines.
Unai Gutierrez Santiago, Alfredo Fernández Sisón, Henk Polinder, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 505–521, https://doi.org/10.5194/wes-7-505-2022, https://doi.org/10.5194/wes-7-505-2022, 2022
Short summary
Short summary
The gearbox is one of the main contributors to the overall cost of wind energy, and it is acknowledged that we still do not fully understand its loading. The study presented in this paper develops a new alternative method to measure input rotor torque in wind turbine gearboxes, overcoming the drawbacks related to measuring on a rotating shaft. The method presented in this paper could make measuring gearbox torque more cost-effective, which would facilitate its adoption in serial wind turbines.
Andrew P. J. Stanley, Jennifer King, Christopher Bay, and Andrew Ning
Wind Energ. Sci., 7, 433–454, https://doi.org/10.5194/wes-7-433-2022, https://doi.org/10.5194/wes-7-433-2022, 2022
Short summary
Short summary
In this paper, we present a computationally inexpensive model to calculate wind turbine blade fatigue caused by waking and partial waking. The model accounts for steady state on the blade, as well as wind turbulence. The model is fast enough to be used in wind farm layout optimization, which has not been possible with more expensive fatigue models in the past. The methods introduced in this paper will allow for farms with increased energy production that maintain turbine structural reliability.
Mareike Leimeister, Maurizio Collu, and Athanasios Kolios
Wind Energ. Sci., 7, 259–281, https://doi.org/10.5194/wes-7-259-2022, https://doi.org/10.5194/wes-7-259-2022, 2022
Short summary
Short summary
Floating offshore wind technology has high potential but still faces challenges for gaining economic competitiveness to allow commercial market uptake. Hence, design optimization plays a key role; however, the final optimum floater obtained highly depends on the specified optimization problem. Thus, by considering alternative structural realization approaches, not very stringent limitations on the structure and dimensions are required. This way, more innovative floater designs can be captured.
Ernesto Camarena, Evan Anderson, Josh Paquette, Pietro Bortolotti, Roland Feil, and Nick Johnson
Wind Energ. Sci., 7, 19–35, https://doi.org/10.5194/wes-7-19-2022, https://doi.org/10.5194/wes-7-19-2022, 2022
Short summary
Short summary
The length of rotor blades of land-based wind turbines is currently constrained by logistics. Turbine manufacturers currently propose segmented solutions to overcome these limits, but blade joints come with extra masses and costs. This work investigates an alternative solution, namely the design of ultra-flexible blades that can be transported on rail via controlled bending. The results show that this is a promising pathway to further increasing the size of land-based wind turbines.
Ye Liu, Yun Qian, and Larry K. Berg
Wind Energ. Sci., 7, 37–51, https://doi.org/10.5194/wes-7-37-2022, https://doi.org/10.5194/wes-7-37-2022, 2022
Short summary
Short summary
Uncertainties in initial conditions (ICs) decrease the accuracy of wind speed forecasts. We find that IC uncertainties can alter wind speed by modulating the weather system. IC uncertainties in local thermal gradient and large-scale circulation jointly contribute to wind speed forecast uncertainties. Wind forecast accuracy in the Columbia River Basin is confined by initial uncertainties in a few specific regions, providing useful information for more intense measurement and modeling studies.
Alessandro Croce, Stefano Cacciola, and Luca Sartori
Wind Energ. Sci., 7, 1–17, https://doi.org/10.5194/wes-7-1-2022, https://doi.org/10.5194/wes-7-1-2022, 2022
Short summary
Short summary
In recent years, research has focused on the development of wind farm controllers with the aim of minimizing interactions between machines and thus improving the production of the wind farm.
In this work we have analyzed the effects of these recent technologies on a single wind turbine, with the aim of understanding the impact of these controllers on the design of the machine itself.
The analyses have shown there are non-negligible effects on some components of the wind turbine.
Nicola Bodini, Weiming Hu, Mike Optis, Guido Cervone, and Stefano Alessandrini
Wind Energ. Sci., 6, 1363–1377, https://doi.org/10.5194/wes-6-1363-2021, https://doi.org/10.5194/wes-6-1363-2021, 2021
Short summary
Short summary
We develop two machine-learning-based approaches to temporally extrapolate uncertainty in hub-height wind speed modeled by a numerical weather prediction model. We test our approaches in the California Outer Continental Shelf, where a significant offshore wind energy development is currently being planned, and we find that both provide accurate results.
Helena Canet, Stefan Loew, and Carlo L. Bottasso
Wind Energ. Sci., 6, 1325–1340, https://doi.org/10.5194/wes-6-1325-2021, https://doi.org/10.5194/wes-6-1325-2021, 2021
Short summary
Short summary
Lidar-assisted control (LAC) is used to redesign the rotor and tower of three turbines, differing in terms of wind class, size, and power rating. The load reductions enabled by LAC are used to save
mass, increase hub height, or extend lifetime. The first two strategies yield reductions in the cost of energy only for the tower of the largest machine, while more interesting benefits are obtained for lifetime extension.
David Getz and Jose Palacios
Wind Energ. Sci., 6, 1291–1309, https://doi.org/10.5194/wes-6-1291-2021, https://doi.org/10.5194/wes-6-1291-2021, 2021
Short summary
Short summary
A methodology to design electrothermal deicing protection for wind turbines is presented. The method relies on modeling and experimental testing to determine the critical ice thickness. The critical ice thickness needed is dependent on the ice tensile strength, which varies with icing conditions. The ice tensile strength must be overcome by the stress that a de-bonded ice structure exerts under centrifugal force at its root region, where it attaches to a non-de-bonded ice region.
Pietro Bortolotti, Nick Johnson, Nikhar J. Abbas, Evan Anderson, Ernesto Camarena, and Joshua Paquette
Wind Energ. Sci., 6, 1277–1290, https://doi.org/10.5194/wes-6-1277-2021, https://doi.org/10.5194/wes-6-1277-2021, 2021
Short summary
Short summary
The length of rotor blades of land-based wind turbines is currently constrained by logistics. Turbine manufacturers currently propose segmented solutions to overcome these limits, but blade joints come with extra masses and costs. This work investigates an alternative solution, namely the design of ultra-flexible blades that can be transported on rail via controlled bending. The results show that this is a promising pathway for further increasing the size of land-based wind turbines.
Andrew P. J. Stanley, Owen Roberts, Jennifer King, and Christopher J. Bay
Wind Energ. Sci., 6, 1143–1167, https://doi.org/10.5194/wes-6-1143-2021, https://doi.org/10.5194/wes-6-1143-2021, 2021
Short summary
Short summary
Wind farm layout optimization is an essential part of wind farm design. In this paper, we present different methods to determine the number of turbines in a wind farm, as well as their placement. Also in this paper we explore the effect that the objective function has on the wind farm design and found that wind farm layout is highly sensitive to the objective. The optimal number of turbines can vary greatly, from 15 to 54 for the cases in this paper, depending on the metric that is optimized.
Gerard Schepers, Pim van Dorp, Remco Verzijlbergh, Peter Baas, and Harmen Jonker
Wind Energ. Sci., 6, 983–996, https://doi.org/10.5194/wes-6-983-2021, https://doi.org/10.5194/wes-6-983-2021, 2021
Short summary
Short summary
In this article the aeroelastic loads on a 10 MW turbine in response to unconventional wind conditions selected from a year-long large-eddy simulation on a site at the North Sea are evaluated. Thereto an assessment is made of the practical importance of these wind conditions within an aeroelastic context based on high-fidelity wind modelling. Moreover the accuracy of BEM-based methods for modelling such wind conditions is assessed.
Quanjiang Yu, Michael Patriksson, and Serik Sagitov
Wind Energ. Sci., 6, 949–959, https://doi.org/10.5194/wes-6-949-2021, https://doi.org/10.5194/wes-6-949-2021, 2021
Short summary
Short summary
There are two ways to maintain a multi-component system: corrective maintenance, when a broken component is replaced with a new one, and preventive maintenance (PM), when some components are replaced in a planned manner before they break down. This article proposes a mathematical model for finding an optimal time to perform the next PM activity and selecting the components which should be replaced. The model is fast to solve, and it can be used as a key module in a maintenance scheduling app.
Kenneth Loenbaek, Christian Bak, Jens I. Madsen, and Michael McWilliam
Wind Energ. Sci., 6, 903–915, https://doi.org/10.5194/wes-6-903-2021, https://doi.org/10.5194/wes-6-903-2021, 2021
Short summary
Short summary
We present a model for assessing the aerodynamic performance of a wind turbine rotor through a different parametrization of the classical blade element momentum model. The model establishes an analytical relationship between the loading in the flow direction and the power along the rotor span. The main benefit of the model is the ease with which it can be applied for rotor optimization and especially load constraint power optimization.
Kenneth Loenbaek, Christian Bak, and Michael McWilliam
Wind Energ. Sci., 6, 917–933, https://doi.org/10.5194/wes-6-917-2021, https://doi.org/10.5194/wes-6-917-2021, 2021
Short summary
Short summary
A novel wind turbine rotor optimization methodology is presented. Using an assumption of radial independence it is possible to obtain the Pareto-optimal relationship between power and loads through the use of KKT multipliers, leaving an optimization problem that can be solved at each radial station independently. Combining it with a simple cost function it is possible to analytically solve for the optimal power per cost with given inputs for the aerodynamics and the cost function.
Erik Quaeghebeur, René Bos, and Michiel B. Zaaijer
Wind Energ. Sci., 6, 815–839, https://doi.org/10.5194/wes-6-815-2021, https://doi.org/10.5194/wes-6-815-2021, 2021
Short summary
Short summary
We present a technique to support the optimal layout (placement) of wind turbines in a wind farm. It efficiently determines good directions and distances for moving turbines. An improved layout reduces production losses and so makes the farm project economically more attractive. Compared to most existing techniques, our approach requires less time. This allows wind farm designers to explore more alternatives and provides the flexibility to adapt the layout to site-specific requirements.
Helena Canet, Pietro Bortolotti, and Carlo L. Bottasso
Wind Energ. Sci., 6, 601–626, https://doi.org/10.5194/wes-6-601-2021, https://doi.org/10.5194/wes-6-601-2021, 2021
Short summary
Short summary
The paper analyzes in detail the problem of scaling, considering both the steady-state and transient response cases, including the effects of aerodynamics, elasticity, inertia, gravity, and actuation. After a general theoretical analysis of the problem, the article considers two alternative ways of designing a scaled rotor. The two methods are then applied to the scaling of a 10 MW turbine of 180 m in diameter down to three different sizes (54, 27, and 2.8 m).
Freia Harzendorf, Ralf Schelenz, and Georg Jacobs
Wind Energ. Sci., 6, 571–584, https://doi.org/10.5194/wes-6-571-2021, https://doi.org/10.5194/wes-6-571-2021, 2021
Short summary
Short summary
Making wind turbines more reliable over their lifetime is an important goal for improving wind turbine technology. The wind turbine drivetrain has a major influence on turbine reliability. This paper presents an approach that will help to identify holistically better drivetrain concepts in an early product design phase from an operational perspective as it is able to estimate and assess drivetrain-concept-specific inherent risks in the operational phase.
Artur Movsessian, Marcel Schedat, and Torsten Faber
Wind Energ. Sci., 6, 539–554, https://doi.org/10.5194/wes-6-539-2021, https://doi.org/10.5194/wes-6-539-2021, 2021
Short summary
Short summary
The assessment of the structural condition and technical lifetime extension of a wind turbine is challenging due to lack of information for the estimation of fatigue loads. This paper demonstrates the modelling of damage-equivalent loads of the fore–aft bending moments of a wind turbine tower, highlighting the advantage of using the neighbourhood component analysis. This feature selection technique is compared to correlation analysis, stepwise regression, and principal component analysis.
Jan Wiśniewski, Krzysztof Rogowski, Konrad Gumowski, and Jacek Szumbarski
Wind Energ. Sci., 6, 287–294, https://doi.org/10.5194/wes-6-287-2021, https://doi.org/10.5194/wes-6-287-2021, 2021
Short summary
Short summary
The article describes results of experimental wind tunnel and CFD testing of four different straight-bladed vertical axis wind turbine model configurations. The experiment tested a novel concept of vertically dividing and azimuthally shifting a turbine rotor into two parts with a specific uneven height division in order to limit cycle amplitudes and average cycle values of bending moments at the bottom of the turbine shaft to increase product lifetime, especially for industrial-scale turbines.
Gesine Wanke, Leonardo Bergami, Frederik Zahle, and David Robert Verelst
Wind Energ. Sci., 6, 203–220, https://doi.org/10.5194/wes-6-203-2021, https://doi.org/10.5194/wes-6-203-2021, 2021
Short summary
Short summary
This article regards a rotor redesign for a wind turbine in upwind and in downwind rotor configurations. A simple optimization tool is used to estimate the aerodynamic planform, as well as the structural mass distribution of the rotor blade. The designs are evaluated in full load base calculations according to the IEC standard with the aeroelastic tool HAWC2. A scaling model is used to scale turbine and energy costs from the design loads and compare the costs for the turbine configurations.
Oliver Menck, Matthias Stammler, and Florian Schleich
Wind Energ. Sci., 5, 1743–1754, https://doi.org/10.5194/wes-5-1743-2020, https://doi.org/10.5194/wes-5-1743-2020, 2020
Short summary
Short summary
Blade bearings of wind turbines experience unusual loads compared to bearings in other industrial applications, which adds some difficulty to the application of otherwise well-established calculation methods, like fatigue lifetime. As a result, different methods for such calculations can be found in the literature. This paper compares three approaches of varying complexity and comes to the conclusion that the simplest of the methods is very inaccurate compared to the more complex methods.
Gianluca Zorzi, Amol Mankar, Joey Velarde, John D. Sørensen, Patrick Arnold, and Fabian Kirsch
Wind Energ. Sci., 5, 1521–1535, https://doi.org/10.5194/wes-5-1521-2020, https://doi.org/10.5194/wes-5-1521-2020, 2020
Short summary
Short summary
Storms, typhoons or seismic actions are likely to cause permanent rotation of offshore wind turbine foundations. Excessive rotation jeopardizes the operation of the wind turbine. In this study geotechnical, loads and probabilistic modelling are used to develop a reliability framework for predicting the rotation of the foundation under cyclic lateral loading.
Nicola Bodini and Mike Optis
Wind Energ. Sci., 5, 1435–1448, https://doi.org/10.5194/wes-5-1435-2020, https://doi.org/10.5194/wes-5-1435-2020, 2020
Short summary
Short summary
Calculations of annual energy production (AEP) and its uncertainty are critical for wind farm financial transactions. Standard industry practice assumes that different uncertainty categories within an AEP calculation are uncorrelated and can therefore be combined through a sum of squares approach. In this project, we show the limits of this assumption by performing operational AEP estimates for over 470 wind farms in the United States and propose a more accurate way to combine uncertainties.
Simon Letzgus
Wind Energ. Sci., 5, 1375–1397, https://doi.org/10.5194/wes-5-1375-2020, https://doi.org/10.5194/wes-5-1375-2020, 2020
Short summary
Short summary
One of the major challenges when working with wind turbine sensor data in practice is the presence of systematic changes in signal behaviour induced by malfunctions or maintenance actions. We found that approximately every third signal is affected by such change points and introduce an algorithm which reliably detects them in a highly automated fashion. The algorithm enables the application of data-driven techniques to monitor wind turbine components using data from commonly installed sensors.
Emmanuel Branlard, Dylan Giardina, and Cameron S. D. Brown
Wind Energ. Sci., 5, 1155–1167, https://doi.org/10.5194/wes-5-1155-2020, https://doi.org/10.5194/wes-5-1155-2020, 2020
Short summary
Short summary
The paper presents an application of the Kalman filtering technique to estimate loads on a wind turbine. The approach combines a mechanical model and a set of measurements to estimate signals that are not available in the measurements, such as wind speed, thrust, tower position, and tower loads. The model is severalfold faster than real time and is intended to be run online, for instance, to evaluate real-time fatigue life consumption of a field turbine using a digital twin.
Laura Schröder, Nikolay Krasimirov Dimitrov, and David Robert Verelst
Wind Energ. Sci., 5, 1007–1022, https://doi.org/10.5194/wes-5-1007-2020, https://doi.org/10.5194/wes-5-1007-2020, 2020
Short summary
Short summary
We suggest a methodology for correlating loads with component reliability of turbines in wind farms by combining physical modeling with machine learning. The suggested approach is demonstrated on an offshore wind farm for comparing performance, loads and lifetime estimations against recorded main bearing failures from maintenance reports. It is found that turbines positioned at the border of the wind farm with a higher expected AEP are estimated to experience earlier main bearing failures.
João Pacheco, Silvina Guimarães, Carlos Moutinho, Miguel Marques, José Carlos Matos, and Filipe Magalhães
Wind Energ. Sci., 5, 983–996, https://doi.org/10.5194/wes-5-983-2020, https://doi.org/10.5194/wes-5-983-2020, 2020
Short summary
Short summary
This paper introduces the Tocha wind farm, presents the different layouts adopted in the instrumentation of the wind turbines and shows initial results. At this preliminary stage, the capabilities of the very extensive monitoring layout are demonstrated. The results presented demonstrate the ability of the different monitoring components to track the modal parameters of the system, composed of tower and rotor, and to characterize the internal loads at the tower base and blade roots.
Gesine Wanke, Leonardo Bergami, and David Robert Verelst
Wind Energ. Sci., 5, 929–944, https://doi.org/10.5194/wes-5-929-2020, https://doi.org/10.5194/wes-5-929-2020, 2020
Short summary
Short summary
Converting an upwind wind turbine into a downwind configuration is shown to come with higher edgewise loads due to lower edgewise damping. The study shows from modal displacements of a reduced-order turbine model that the interaction between the forces on the rotor, the rotor motion, and the tower torsion is the main reason for the observed damping decrease.
Malo Rosemeier and Matthias Saathoff
Wind Energ. Sci., 5, 897–909, https://doi.org/10.5194/wes-5-897-2020, https://doi.org/10.5194/wes-5-897-2020, 2020
Short summary
Short summary
A huge number of wind turbines have reached their designated lifetime of 20 years.
Most of the turbines installed were overdesigned.
In practice, these turbines could potentially operate longer to increase the energy yield.
For the use case turbine considered in this work, a simple lifetime extension of 8.7 years increases the energy yield by 43.5 %. When the swept rotor area is increased by means of a blade tip extension, the yield is increased by an additional 2.3 %.
Sebastian Perez-Becker, Francesco Papi, Joseph Saverin, David Marten, Alessandro Bianchini, and Christian Oliver Paschereit
Wind Energ. Sci., 5, 721–743, https://doi.org/10.5194/wes-5-721-2020, https://doi.org/10.5194/wes-5-721-2020, 2020
Short summary
Short summary
Aeroelastic design load calculations play a key role in determining the design loads of the different wind turbine components. This study compares load estimations from calculations using a Blade Element Momentum aerodynamic model with estimations from calculations using a higher-order Lifting-Line Free Vortex Wake aerodynamic model. The paper finds and explains the differences in fatigue and extreme turbine loads for power production simulations that cover a wide range of turbulent wind speeds.
Kwangtae Ha, Moritz Bätge, David Melcher, and Steffen Czichon
Wind Energ. Sci., 5, 591–599, https://doi.org/10.5194/wes-5-591-2020, https://doi.org/10.5194/wes-5-591-2020, 2020
Short summary
Short summary
This paper outlines a novel segment test methodology for wind turbine rotor blades. It mainly aims at improving the efficiency of the fatigue test as a future test method at Fraunhofer IWES. The numerical simulation reveals that this method has a significant time savings of up to 43 % and 52 % for 60 and 90 m blades, while improving test quality within an acceptable range of overload. This test methodology could be a technical solution for future offshore rotor blades longer than 100 m.
Jaime Liew, Albert M. Urbán, and Søren Juhl Andersen
Wind Energ. Sci., 5, 427–437, https://doi.org/10.5194/wes-5-427-2020, https://doi.org/10.5194/wes-5-427-2020, 2020
Short summary
Short summary
In wind farms, the interaction between neighboring turbines can cause notable power losses. The focus of the paper is on how the combination of turbine yaw misalignment and wake effects influences the power loss in a wind turbine. The results of the paper show a more notable power loss due to turbine misalignment when turbines are closely spaced. The presented conclusions enable better predictions of a turbine's power production, which can assist the wind farm design process.
Julian Quick, Jennifer King, Ryan N. King, Peter E. Hamlington, and Katherine Dykes
Wind Energ. Sci., 5, 413–426, https://doi.org/10.5194/wes-5-413-2020, https://doi.org/10.5194/wes-5-413-2020, 2020
Short summary
Short summary
We investigate the trade-offs in optimization of wake steering strategies, where upstream turbines are positioned to deflect wakes away from downstream turbines, with a probabilistic perspective. We identify inputs that are sensitive to uncertainty and demonstrate a realistic optimization under uncertainty for a wind power plant control strategy. Designing explicitly around uncertainty yielded control strategies that were generally less aggressive and more robust to the uncertain input.
Erik Quaeghebeur, Sebastian Sanchez Perez-Moreno, and Michiel B. Zaaijer
Wind Energ. Sci., 5, 259–284, https://doi.org/10.5194/wes-5-259-2020, https://doi.org/10.5194/wes-5-259-2020, 2020
Short summary
Short summary
The design and management of an offshore wind farm involve expertise in many disciplines. It is hard for a single person to maintain the overview needed. Therefore, we have created WESgraph, a knowledge base for the wind farm domain, implemented as a graph database. It stores descriptions of the multitude of domain concepts and their various interconnections. It allows users to explore the domain and search for relationships within and across disciplines, enabling various applications.
Lars Einar S. Stieng and Michael Muskulus
Wind Energ. Sci., 5, 171–198, https://doi.org/10.5194/wes-5-171-2020, https://doi.org/10.5194/wes-5-171-2020, 2020
Short summary
Short summary
We present a framework for reducing the cost of support structures for offshore wind turbines that takes into account the many uncertainties that go into the design process. The results demonstrate how an efficient new approach, tailored for support structure design, allows the state of the art for design without uncertainties to be used within a framework that does include these uncertainties. This allows more realistic, and less conservative, design methods
to be used for practical design.
Kenneth Loenbaek, Christian Bak, Jens I. Madsen, and Bjarke Dam
Wind Energ. Sci., 5, 155–170, https://doi.org/10.5194/wes-5-155-2020, https://doi.org/10.5194/wes-5-155-2020, 2020
Short summary
Short summary
From the basic aerodynamic theory of wind turbine rotors, it is a well-known fact that there is a relationship between the loading of the rotor and power efficiency. It shows that there is a loading that maximizes the power efficiency, and it is common to target this maximum when designing rotors. But in this paper it is found that for rotors constrained by a load, the maximum power is found by decreasing the loading and increasing the rotor radius. Max power efficiency is therefore not optimal.
Nikola Vasiljević, Andrea Vignaroli, Andreas Bechmann, and Rozenn Wagner
Wind Energ. Sci., 5, 73–87, https://doi.org/10.5194/wes-5-73-2020, https://doi.org/10.5194/wes-5-73-2020, 2020
Short summary
Short summary
A WindScanner system consisting of two synchronized scanning lidars potentially represents a cost-effective solution for multipoint measurements. However, the lidar limitations and the site limitations are detrimental to the installation of lidars and number and location of measurement positions. To simplify the process of finding suitable measurement positions and lidar installation locations, a campaign planning workflow was devised. The paper describes the workflow and how it was digitalized.
Andrew P. J. Stanley and Andrew Ning
Wind Energ. Sci., 4, 663–676, https://doi.org/10.5194/wes-4-663-2019, https://doi.org/10.5194/wes-4-663-2019, 2019
Short summary
Short summary
When designing a wind farm, one crucial step is finding the correct location or optimizing the location of the wind turbines to maximize power production. In the past, optimizing the turbine layout of large wind farms has been difficult because of the large number of interacting variables. In this paper, we present the boundary-grid parameterization method, which defines the layout of any wind farm with only five variables, allowing people to study and design wind farms regardless of the size.
Daniel S. Zalkind, Gavin K. Ananda, Mayank Chetan, Dana P. Martin, Christopher J. Bay, Kathryn E. Johnson, Eric Loth, D. Todd Griffith, Michael S. Selig, and Lucy Y. Pao
Wind Energ. Sci., 4, 595–618, https://doi.org/10.5194/wes-4-595-2019, https://doi.org/10.5194/wes-4-595-2019, 2019
Short summary
Short summary
We present a model that both (1) reduces the computational effort involved in analyzing design trade-offs and (2) provides a qualitative understanding of the root cause of fatigue and extreme structural loads for wind turbine components from the blades to the tower base. We use this model in conjunction with design loads from high-fidelity simulations to analyze and compare the trade-offs between power capture and structural loading for large rotor concepts.
Amy N. Robertson, Kelsey Shaler, Latha Sethuraman, and Jason Jonkman
Wind Energ. Sci., 4, 479–513, https://doi.org/10.5194/wes-4-479-2019, https://doi.org/10.5194/wes-4-479-2019, 2019
Short summary
Short summary
This paper identifies the most sensitive parameters for the load response of a 5 MW wind turbine. Two sets of parameters are examined: one set relating to the wind excitation characteristics and a second related to the physical properties of the wind turbine. The two sensitivity analyses are done separately, and the top most-sensitive parameters are identified for different load outputs throughout the structure. The findings will guide future validation campaigns and measurement needs.
Pietro Bortolotti, Helena Canet, Carlo L. Bottasso, and Jaikumar Loganathan
Wind Energ. Sci., 4, 397–406, https://doi.org/10.5194/wes-4-397-2019, https://doi.org/10.5194/wes-4-397-2019, 2019
Short summary
Short summary
The paper studies the effects of uncertainties in aeroservoelastic
wind turbine models. Uncertainties are associated with the wind
inflow characteristics and the blade surface state, and they are propagated
by means of two non-intrusive methods throughout the
aeroservoelastic model of a large conceptual offshore wind
turbine. Results are compared with a brute-force extensive Monte
Carlo sampling to assess the convergence characteristics of the
non-intrusive approaches.
Andrés Santiago Padrón, Jared Thomas, Andrew P. J. Stanley, Juan J. Alonso, and Andrew Ning
Wind Energ. Sci., 4, 211–231, https://doi.org/10.5194/wes-4-211-2019, https://doi.org/10.5194/wes-4-211-2019, 2019
Short summary
Short summary
We propose the use of a new method to efficiently compute the annual energy production (AEP) of a wind farm by properly handling the uncertainties in the wind direction and wind speed. We apply the new ideas to the layout optimization of a large wind farm. We show significant computational savings by reducing the number of simulations required to accurately compute and optimize the AEP of different wind farms.
Mads H. Aa. Madsen, Frederik Zahle, Niels N. Sørensen, and Joaquim R. R. A. Martins
Wind Energ. Sci., 4, 163–192, https://doi.org/10.5194/wes-4-163-2019, https://doi.org/10.5194/wes-4-163-2019, 2019
Short summary
Short summary
The wind energy industry relies heavily on CFD to analyze new designs. This paper investigates a way to utilize CFD further upstream the design process where lower-fidelity methods are used. We present the first comprehensive 3-D CFD adjoint-based shape optimization of a 10 MW modern offshore wind turbine. The present work shows that, with the right tools, we can model the entire geometry, including the root, and optimize modern wind turbine rotors at the cost of a few hundred CFD evaluations.
Pietro Bortolotti, Abhinav Kapila, and Carlo L. Bottasso
Wind Energ. Sci., 4, 115–125, https://doi.org/10.5194/wes-4-115-2019, https://doi.org/10.5194/wes-4-115-2019, 2019
Short summary
Short summary
The paper compares upwind and downwind three-bladed configurations
for a 10 MW wind turbine in terms of power and loads. For the
downwind case, the study also considers a load-aligned solution
with active coning. Results indicate that downwind solutions are
slightly more advantageous than upwind ones, although improvements
are small. Additionally, pre-alignment is difficult to achieve in
practice, and the active coning solution is associated with very
significant engineering challenges.
Cited articles
Allen, J. T. and Tippett, M. K.: The characteristics of United States hail
reports: 1955–2014, E-Journal of Severe Storms Meteorology, 10, 1–31, 2015.
Allen, J. T., Tippett, M. K., and Sobel, A. H.: An empirical model relating
US monthly hail occurrence to large-scale meteorological environment, J. Adv. Model. Earth Sy., 7, 226–243, 2015.
Allen, J. T., Tippett, M. K., Kaheil, Y., Sobel, A. H., Lepore, C., Nong,
S., and Muehlbauer, A.: An extreme value model for US hail size, Mon. Weather Rev., 145, 4501–4519, 2017.
Alpert, J. C. and Kumar, V. K.: Radial wind super-obs from the WSR-88D
radars in the NCEP operational assimilation system, Mon. Weather Rev., 135, 1090–1109, 2007.
Amirzadeh, B., Louhghalam, A., Raessi, M., and Tootkaboni, M.: A
computational framework for the analysis of rain-induced erosion in wind
turbine blades, part I: Stochastic rain texture model and drop impact
simulations, J. Wind Eng. Ind. Aerod., 163, 33–43, 2017a.
Amirzadeh, B., Louhghalam, A., Raessi, M., and Tootkaboni, M.: A
computational framework for the analysis of rain-induced erosion in wind
turbine blades, part II: Drop impact-induced stresses and blade coating
fatigue life, J. Wind Eng. Ind. Aerod., 163, 44–54, 2017b.
Appleby-Thomas, G. J., Hazell, P. J., and Dahini, G.: On the response of two
commercially-important CFRP structures to multiple ice impacts, Composite
Structures, 93, 2619–2627, 2011.
Auer, A. H.: Distribution of graupel and hail with size, Mon. Weather Rev., 100, 325–328, 1972.
AWEA: US wind industry annual market report year ending 2018, American Wind
Energy Association, Washington, DC, USA, available at: https://www.awea.org/resources/publications-and-reports/market-reports/2018-u-s-wind-industry-market-reports (last access: 15 January 2020), 2019.
Bartolomé, L. and Teuwen, J.: Prospective challenges in the experimentation of the rain erosion on the leading edge of wind turbine blades, Wind Energy, 22, 140–151, 2019.
Bech, J. I., Hasager, C. B., and Bak, C.: Extending the life of wind turbine blade leading edges by reducing the tip speed during extreme precipitation events, Wind Energ. Sci., 3, 729–748, https://doi.org/10.5194/wes-3-729-2018, 2018.
Best, A.: The size distribution of raindrops, Q. J. Roy. Meteor. Soc., 76, 16–36, 1950.
Blair, S. F., Laflin, J. M., Cavanaugh, D. E., Sanders, K. J., Currens, S.
R., Pullin, J. I., Cooper, D. T., Deroche, D. R., Leighton, J. W., and
Fritchie, R. V.: High-resolution hail observations: Implications for NWS
warning operations, Weather Forecast., 32, 1101–1119, 2017.
Bolinger, M. and Wiser, R.: Understanding wind turbine price trends in the
US over the past decade, Energ. Policy, 42, 628–641, 2012.
Brimelow, J. C., Burrows, W. R., and Hanesiak, J. M.: The changing hail
threat over North America in response to anthropogenic climate change,
Nat. Clim. Change, 7, 516–522, 2017.
Brøndsted, P., Lilholt, H., and Lystrup, A.: Composite materials for wind
power turbine blades, Annu. Rev. Mater. Res., 35, 505–538, 2005.
Brown, M.: Turbine servicing act before the warranty is over, Wind Power Monthly, 989458, 10 March 2010.
Brown, T. M., Pogorzelski, W. H., and Giammanco, I. M.: Evaluating hail damage using property insurance claims data, Weather Clim. Soc., 7, 197–210, 2015
Carroll, J., McDonald, A., and McMillan, D.: Failure rate, repair time and
unscheduled O&M cost analysis of offshore wind turbines, Wind Energy, 19,
1107–1119, 2016.
Chandrasekar, V., Keränen, R., Lim, S., and Moisseev, D.: Recent
advances in classification of observations from dual polarization weather
radars, Atmos. Res., 119, 97–111, 2013.
Changnon, S. A.: Data and approaches for determining hail risk in the
contiguous United States, J. Appl. Meteorol., 38, 1730–1739, 1999.
Changnon, S. A.: Increasing major hail losses in the US, Climatic Change,
96, 161–166, 2009.
Changnon, S. A., Changnon, D., and Hilberg, S. D.: Hailstorms across the
nation: An atlas about hail and its damages, available at: https://www.isws.illinois.edu/pubdoc/CR/ISWSCR2009-12.pdf (last access: 15 January 2020), 2009.
Cheng, L. and English, M.: A relationship between hailstone concentration
and size, J. Atmos. Sci., 40, 204–213, 1983.
Cintineo, J. L., Smith, T. M., Lakshmanan, V., Brooks, H. E., and Ortega, K.
L.: An objective high-resolution hail climatology of the contiguous United
States, Weather Forecast., 27, 1235–1248, 2012.
Cortés, E., Sánchez, F., O'Carroll, A., Madramany, B., Hardiman, M.,
and Young, T. M.: On the Material Characterisation of Wind Turbine Blade
Coatings, Materials, 10, E1146, https://doi.org/10.3390/ma10101146, 2017.
Crum, T. D., Saffle, R. E., and Wilson, J. W.: An update on the NEXRAD
program and future WSR-88D support to operations, Weather Forecast., 13, 253–262, 1998.
Cunha, L. K., Smith, J. A., Krajewski, W. F., Baeck, M. L., and Seo, B.-C.:
NEXRAD NWS polarimetric precipitation product evaluation for IFloodS,
J. Hydrometeorol., 16, 1676–1699, 2015.
Dalili, N., Edrisy, A., and Carriveau, R.: A review of surface engineering
issues critical to wind turbine performance, Renew. Sust. Energ. Rev., 13, 428–438, https://doi.org/10.1016/j.rser.2007.11.009, 2009.
Dashtkar, A., Hadavinia, H., Sahinkaya, M. N., Williams, N. A., Vahid, S.,
Ismail, F., and Turner, M.: Rain erosion-resistant coatings for wind turbine
blades: A review, Polym. Polym. Compos., 27, 443–475, https://doi.org/10.1177/0967391119848232, 2019.
Dennis, E. J. and Kumjian, M. R.: The impact of vertical wind shear on hail
growth in simulated supercells, J. Atmos. Sci., 74, 641–663, 2017.
Dessens, J., Berthet, C., and Sanchez, J.: Change in hailstone size distributions with an increase in the melting level height, Atmos. Res., 158, 245–253, 2015.
Durakovic, A.: COBRA team tackles blade erosion, in: Offshore Wind, 5 March 2019.
Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R.,
and Mearns, L. O.: Climate Extremes: Observations, Modeling, and Impacts,
Science, 289, 2068–2074, 2000.
Eisenberg, D., Laustsen, S., and Stege, J.: Wind turbine blade coating
leading edge rain erosion model: Development and validation, Wind Energy,
21, 942–951, 2018.
Evans, A., Ito, Y., and Rosenblatt, M.: Impact damage thresholds in brittle
materials impacted by water drops, J. Appl. Phys., 51, 2473–2482, 1980.
Fast, J. D., Newsom, R. K., Allwine, K. J., Xu, Q., Zhang, P., Copeland, J.,
and Sun, J.: An evaluation of two NEXRAD wind retrieval methodologies and
their use in atmospheric dispersion models, J. Appl. Meteorol. Clim., 47, 2351–2371, 2008.
Feingold, G. and Levin, Z.: The lognormal fit to raindrop spectra from
frontal convective clouds in Israel, J. Clim. Appl. Meteorol., 25, 1346–1363, 1986.
Fiore, G., Camarinha Fujiwara, G. E., and Selig, M. S.: A damage assessment
for wind turbine blades from heavy atmospheric particles, in:
53rd AIAA Aerospace Sciences Meeting, 5–9 January 2015, Kissimmee, Florida,
AIAA SciTech, 22 pp., 2015.
Froese, M.: Wind-farm owners can now detect leading-edge erosion from data
alone, Windpower Engineering and Development, 14 August 2018.
Gagne, D. J., Haupt, S. E., Nychka, D. W., and Thompson, G.: Interpretable
Deep Learning for Spatial Analysis of Severe Hailstorms, Mon. Weather Rev., 147, 2827–2845, https://doi.org/10.1175/MWR-D-18-0316.1, 2019.
Gaudern, N.: A practical study of the aerodynamic impact of wind turbine
blade leading edge erosion, J. Phys. Conf. Ser., 524, 012031, https://doi.org/10.1088/1742-6596/524/1/012031, 2014.
Giguère, P. and Selig, M. S.: Aerodynamic effects of leading-edge tape
on aerofoils at low Reynolds numbers, Wind Energy, 2, 125–136, 1999.
Herring, R., Dyer, K., Martin, F., and Ward, C.: The increasing importance
of leading edge erosion and a review of existing protection solutions,
Renew. Sust. Energ. Rev., 115, 109382, https://doi.org/10.1016/j.rser.2019.109382, 2019.
Heymsfield, A. J., Giammanco, I. M., and Wright, R.: Terminal velocities and
kinetic energies of natural hailstones, Geophys. Res. Lett., 41, 8666–8672, 2014.
Istok, M. J., Fresch, M., Smith, S., Jing, Z., Murnan, R., Ryzhkov, A.,
Krause, J., Jain, M., Ferree, J., and Schlatter, P.: WSR-88D dual
polarization initial operational capabilities, 25th Conference on International Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, American Meteorological Society, Preprints, 10–15 January 2009.
Johnson, J., MacKeen, P. L., Witt, A., Mitchell, E. D. W., Stumpf, G. J.,
Eilts, M. D., and Thomas, K. W.: The storm cell identification and tracking
algorithm: An enhanced WSR-88D algorithm, Weather Forecast., 13, 263–276, 1998.
Karl, T. R., Knight, R. W., and Plummer, N.: Trends in high-frequency
climate variability in the twentieth century, Nature, 377, 217–220, 1995.
Keegan, M. H., Nash, D., and Stack, M.: On erosion issues associated with
the leading edge of wind turbine blades, J. Phys. D, 46, 383001, https://doi.org/10.1088/0022-3727/46/38/383001, 2013.
Kelleher, K. E., Droegemeier, K. K., Levit, J. J., Sinclair, C., Jahn, D.
E., Hill, S. D., Mueller, L., Qualley, G., Crum, T. D., and Smith, S. D.:
Project craft: A real-time delivery system for nexrad level ii data via the
internet, B. Am. Meteorol. Soc., 88, 1045–1058, 2007.
Kim, H. and Kedward, K. T.: Modeling hail ice impacts and predicting impact
damage initiation in composite structures, AIAA J., 38, 1278–1288, 2000.
Kumjian, M. R.: Weather radars, in: Remote Sensing of Clouds and
Precipitation, edited by: Andronache, C., Springer, 15–63, 2018.
Kumjian, M. R., Richardson, Y. P., Meyer, T., Kosiba, K. A., and Wurman, J.:
Resonance Scattering Effects in Wet Hail Observed with a Dual-X-Band-Frequency, Dual-Polarization Doppler on Wheels Radar, J.
Appl. Meteorol. Clim., 57, 2713–2731, 2018.
Kumjian, M. R., Lebo, Z. J., and Ward, A. M.: Storms Producing Large
Accumulations of Small Hail, J. Appl. Meteorol. Clim., 58, 341–364, 2019.
Lane, J. E., Sharp, D. W., Kasparis, T. C., and Doesken, N. J.: P2.10 HAIL
DISDROMETER ARRAY FOR LAUNCH SYSTEMS SUPPORT, 12th Conference on Integrated
Observing and Assimilation Systems for the Atmosphere, Oceans and Land
Surface, 20–24 January 2008, New Orleans, LA, USA, 2008,
Loomis, I.: Hail causes the most storm damage costs across North America,
EOS, 99, https://doi.org/10.1029/2018EO104487, 2018.
Marshall, J. S. and Palmer, W. M. K.: The distribution of raindrops with
size, J. Meteorol., 5, 165–166, 1948.
Mishnaevsky Jr., L.: Repair of wind turbine blades: Review of methods and
related computational mechanics problems, Renew. Energ., 140, 828–839,
2019.
Mishnaevsky Jr., L., Branner, K., Petersen, H., Beauson, J., McGugan, M., and
Sørensen, B.: Materials for wind turbine blades: an overview, Materials,
10, 1285, https://doi.org/10.3390/ma10111285, 2017.
Moné, C., Hand, M., Bolinger, M., Rand, J., Heimiller, D., and Ho, J.:
2015 Cost of Wind Energy Review, Wind Technologies Office, USDoE, No. DEAC02-05CH11231, 95 pp., 2017.
Morrison, H., Kumjian, M. R., Martinkus, C. P., Prat, O. P., and van
Lier-Walqui, M.: A general N-moment normalization method for deriving
raindrop size distribution scaling relationships, J. Appl. Meteorol. Clim., 58, 247–267, 2019.
Nelson, J. W., Riddle, T. W., and Cairns, D. S.: Effects of defects in composite wind turbine blades – Part 1: Characterization and mechanical testing, Wind Energ. Sci., 2, 641–652, https://doi.org/10.5194/wes-2-641-2017, 2017.
Ni, X., Liu, C., Cecil, D. J., and Zhang, Q.: On the detection of hail using
satellite passive microwave radiometers and precipitation radar, J. Appl. Meteorol. Clim., 56, 2693–2709, 2017.
NOAA: NOAA Next Generation Radar (NEXRAD) Level 2 Base Data, available at: https://www.ncdc.noaa.gov/nexradinv/ (last access: 7 January 2019), 1991.
NOAA: Federal Meteorological Handbook, No. 11 WSR-88D Meteorologic
Observations Part A, System concepts, responsibilities, and procedures.
FCM-H11A-2016. Office of the Federal Coordinator for Meteorological
Services, Washington, DC, 2016a.
NOAA: Federal Meteorological Handbook, No. 11 WSR-88D Meteorologic
Observations Part C, Products and Algorithms. FCM-H11A-2016. Office of the
Federal Coordinator for Meteorological Services, Washington, DC, 2016b.
NOAA NCEI (National Centers for Environmental Information): NOAA's Weather and Climate Toolkit, available at: https://www.ncdc.noaa.gov/wct/, last access: 15 January 2020a.
NOAA NCEI (National Centers for Environmental Information): Radar Data, available at: https://www.ncdc.noaa.gov/data-access/radar-data, last access: 15 January 2020b.
Prat, O. P. and Nelson, B. R.: Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002–2012), Hydrol. Earth Syst. Sci., 19, 2037–2056, https://doi.org/10.5194/hess-19-2037-2015, 2015.
Preece, C. M.: Treatise on Materials Science and Technology,
Erosion, Academic Press, New York, NY, USA, 16, 450 pp., 1979.
Prein, A. F. and Holland, G. J.: Global estimates of damaging hail hazard,
Weather and Climate Extremes, 22, 10–23, https://doi.org/10.1016/j.wace.2018.10.004, 2018.
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation, Springer, 954 pp., ISBN: 978-0-7923-4211-3, 2010.
Pryor, S. C., Shepherd, T. J., and Barthelmie, R. J.: Interannual variability of wind climates and wind turbine annual energy production, Wind Energ. Sci., 3, 651–665, https://doi.org/10.5194/wes-3-651-2018, 2018.
Pryor, S. C., Shepherd, T. J., Barthelmie, R. J., Hahmann, A. N., and
Volker, P. J. H.: Wind farm wakes simulated using WRF, J. Phys. Conf. Ser., 1256, 012025, https://doi.org/10.1088/1742-6596/1256/1/012025, 2019.
Rempel, L.: Rotor blade leading edge erosion-real life experiences, Wind
Systems Magazine, 11, 22–24, 2012.
Salonen, K., Niemelä, S., and Fortelius, C.: Application of radar wind
observations for low-level NWP wind forecast validation, J. Appl. Meteorol. Clim., 50, 1362–1371, 2011.
Saltikoff, E., Haase, G., Leijnse, H., Novák, P., and Delobbe, L.: OPERA – past, present and future, in: 10th European Conference on Radar in Meteorology and Hydrology (ERAD 2018), 1–6 July 2018, Ede-Wageningen, The Netherlands, edited by: de Vos, L., Leijnse, H., and Uijlenhoet, R., 491–493, 2018.
Sareen, A., Sapre, C. A., and Selig, M. S.: Effects of leading edge erosion
on wind turbine blade performance, Wind Energy, 17, 1531–1542, 2014.
Schramm, M., Rahimi, H., Stoevesandt, B., and Tangager, K.: The Influence of
Eroded Blades on Wind Turbine Performance Using Numerical Simulations,
Energies 10, 1420, https://doi.org/10.3390/en10091420, 2017.
Seo, B.-C. and Krajewski, W. F.: Scale dependence of radar rainfall
uncertainty: Initial evaluation of NEXRAD's new super-resolution data for
hydrologic applications, J. Hydrometeorol., 11, 1191–1198, 2010.
Seo, B.-C., Dolan, B., Krajewski, W. F., Rutledge, S. A., and Petersen, W.:
Comparison of single-and dual-polarization–based rainfall estimates using
NEXRAD data for the NASA Iowa Flood Studies project, J. Hydrometeorol., 16, 1658–1675, 2015.
Shohag, M. A. S., Hammel, E. C., Olawale, D. O., and Okoli, O. I.: Damage
mitigation techniques in wind turbine blades: A review, Wind Engineering,
41, 185–210, 2017.
Shokrieh, M. M. and Bayat, A.: Effects of ultraviolet radiation on
mechanical properties of glass/polyester composites, J. Compos. Mater., 41, 2443–2455, 2007.
Slot, H., Gelinck, E., Rentrop, C., and van der Heide, E.: Leading edge
erosion of coated wind turbine blades: Review of coating life models,
Renew. Energ., 80, 837–848, 2015.
Straka, J. M., Zrnić, D. S., and Ryzhkov, A. V.: Bulk hydrometeor
classification and quantification using polarimetric radar data: Synthesis
of relations, J. Appl. Meteorol., 39, 1341–1372, 2000.
Stull, R.: Meteorology for Scientists and Engineers, 3rd edn., Brooks/Cole, Univ. of British Columbia, Vancouver, Canada, 938 pp., ISBN 978-0-88865-178-5, 2015.
Testik, F. Y. and Pei, B.: Wind effects on the shape of raindrop size
distribution, J. Hydrometeorol., 18, 1285–1303, 2017.
Traphan, D., Herráez, I., Meinlschmidt, P., Schlüter, F., Peinke, J., and Gülker, G.: Remote surface damage detection on rotor blades of operating wind turbines by means of infrared thermography, Wind Energ. Sci., 3, 639–650, https://doi.org/10.5194/wes-3-639-2018, 2018.
Uijlenhoet, R.: Raindrop size distributions and radar reflectivity–rain rate relationships for radar hydrology, Hydrol. Earth Syst. Sci., 5, 615–628, https://doi.org/10.5194/hess-5-615-2001, 2001.
Ulbrich, C. W.: Natural variations in the analytical form of the raindrop
size distribution, J. Clim. Appl. Meteorol., 22, 1764–1775, 1983.
U.S. Energy Information Administration: Electric Power Annual 2017, U.S. DoE, Washington D.C., 239 pp., available at: https://www.eia.gov/electricity/annual/pdf/epa.pdf (last access: 15 January 2020), 2018.
USGS: The United States Wind Turbine Database (USWTDB), available at: https://eerscmap.usgs.gov/uswtdb/ (last access: 15 January 2020), 2018.
Valaker, E. A., Armada, S., and Wilson, S.: Droplet erosion protection
coatings for offshore wind turbine blades, Energy Proced., 80, 263–275,
2015.
Villarini, G. and Krajewski, W. F.: Review of the different sources of
uncertainty in single polarization radar-based estimates of rainfall,
Surv. Geophys., 31, 107–129, 2010.
Wilson, J. W. and Brandes, E. A.: Radar measurement of rainfall – A summary, B. Am. Meteorol. Soc., 60, 1048–1060, 1979.
Wiser, R. and Bolinger, M.: 2017 Wind Technologies Market Report,
DOE/EE-1798, Office of Energy Efficiency & Renewable Energy, U.S.
Department of Energy, 81 pp., available at: https://www.energy.gov/sites/prod/files/2018/08/f54/2017_wind_technologies_market_report_8.15.18.v2.pdf (last access: 15 January 2020), 2018.
Wiser, R., Jenni, K., Seel, J., Baker, E., Hand, M., Lantz, E., and Smith,
A.: Expert elicitation survey on future wind energy costs, Nature Energy, 1,
16135, https://doi.org/10.1038/nenergy.2016.135, 2016.
Witt, A., Eilts, M. D., Stumpf, G. J., Johnson, J., Mitchell, E. D. W., and
Thomas, K. W.: An enhanced hail detection algorithm for the WSR-88D, Weather Forecast., 13, 286–303, 1998.
Zhang, S., Dam-Johansen, K., Nørkjær, S., Bernad Jr., P. L., and Kiil,
S.: Erosion of wind turbine blade coatings–design and analysis of jet-based
laboratory equipment for performance evaluation, Prog. Org. Coat., 78, 103–115, 2015.
Zhu, F., and Li, F.: Reliability analysis of wind turbines, in: Stability
Control & Reliable Performance of Wind Turbines, chap. 9, 169–186,
https://doi.org/10.5772/intechopen.74859, 2018.
Short summary
Wind turbine blade leading edge erosion (LEE) is potentially a significant source of energy loss and expense for wind farm operators. This study presents a novel approach to characterizing LEE potential from precipitation across the contiguous USA based on publicly available National Weather Service dual-polarization RADAR data. The approach is described in detail and illustrated using six locations distributed across parts of the USA that have substantial wind turbine deployments.
Wind turbine blade leading edge erosion (LEE) is potentially a significant source of energy loss...
Special issue
Altmetrics
Final-revised paper
Preprint