Articles | Volume 6, issue 2
https://doi.org/10.5194/wes-6-505-2021
https://doi.org/10.5194/wes-6-505-2021
Research article
 | 
12 Apr 2021
Research article |  | 12 Apr 2021

Understanding and mitigating the impact of data gaps on offshore wind resource estimates

Julia Gottschall and Martin Dörenkämper

Related authors

Comparing atmospheric boundary layer heights from vertical profiling scanning lidars to ERA5 and WRF
Cristina Mulet-Benzo, Andrew Black, and Julia Gottschall
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-155,https://doi.org/10.5194/wes-2025-155, 2025
Preprint under review for WES
Short summary
Ship-based lidar measurements for validating ASCAT-derived and ERA5 offshore wind profiles
Hugo Rubio, Daniel Hatfield, Charlotte Bay Hasager, Martin Kühn, and Julia Gottschall
Atmos. Meas. Tech., 18, 4949–4968, https://doi.org/10.5194/amt-18-4949-2025,https://doi.org/10.5194/amt-18-4949-2025, 2025
Short summary
Evaluating the Impact of Motion Compensation on Turbulence Intensity Measurements from Continuous-Wave and Pulsed Floating Lidars
Warren Watson, Gerrit Wolken-Möhlmann, and Julia Gottschall
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-45,https://doi.org/10.5194/wes-2025-45, 2025
Revised manuscript accepted for WES
Short summary
Characterization of local wind profiles: a random forest approach for enhanced wind profile extrapolation
Farkhondeh (Hanie) Rouholahnejad and Julia Gottschall
Wind Energ. Sci., 10, 143–159, https://doi.org/10.5194/wes-10-143-2025,https://doi.org/10.5194/wes-10-143-2025, 2025
Short summary
Understanding the impact of data gaps on long-term offshore wind resource estimates
Martin Georg Jonietz Alvarez, Warren Watson, and Julia Gottschall
Wind Energ. Sci., 9, 2217–2233, https://doi.org/10.5194/wes-9-2217-2024,https://doi.org/10.5194/wes-9-2217-2024, 2024
Short summary

Cited articles

Baas, P., Bosveld, F. C., and Burgers, G.: The impact of atmospheric stability on the near-surface wind over sea in storm conditions, Wind Energy, 19, 187–198, https://doi.org/10.1002/we.1825, 2016. a
Carta, J. A., Velázquez, S., and Cabrera, P.: A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site, Renew. Sust. Energ. Rev., 27, 362–400, https://doi.org/10.1016/j.rser.2013.07.004, 2013. a, b
Chang, T. P.: Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application, Appl. Energ., 88, 272–282, https://doi.org/10.1016/j.apenergy.2010.06.018, 2011. a
Copernicus CDS: Copernicus Climate Data Store, available at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview, last access: 8 April 2021. a
Copernicus CMS: Copernicus Marine Service, available at: https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001, last access: 8 April 2021. a
Download
Share
Altmetrics
Final-revised paper
Preprint