Articles | Volume 6, issue 2
https://doi.org/10.5194/wes-6-505-2021
https://doi.org/10.5194/wes-6-505-2021
Research article
 | 
12 Apr 2021
Research article |  | 12 Apr 2021

Understanding and mitigating the impact of data gaps on offshore wind resource estimates

Julia Gottschall and Martin Dörenkämper

Related authors

Ship-based lidar measurements for validating ASCAT-derived and ERA5 offshore wind profiles
Hugo Rubio, Daniel Hatfield, Charlotte Bay Hasager, Martin Kühn, and Julia Gottschall
Atmos. Meas. Tech., 18, 4949–4968, https://doi.org/10.5194/amt-18-4949-2025,https://doi.org/10.5194/amt-18-4949-2025, 2025
Short summary
Evaluating the Impact of Motion Compensation on Turbulence Intensity Measurements from Continuous-Wave and Pulsed Floating Lidars
Warren Watson, Gerrit Wolken-Möhlmann, and Julia Gottschall
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-45,https://doi.org/10.5194/wes-2025-45, 2025
Preprint under review for WES
Short summary
Characterization of local wind profiles: a random forest approach for enhanced wind profile extrapolation
Farkhondeh (Hanie) Rouholahnejad and Julia Gottschall
Wind Energ. Sci., 10, 143–159, https://doi.org/10.5194/wes-10-143-2025,https://doi.org/10.5194/wes-10-143-2025, 2025
Short summary
Understanding the impact of data gaps on long-term offshore wind resource estimates
Martin Georg Jonietz Alvarez, Warren Watson, and Julia Gottschall
Wind Energ. Sci., 9, 2217–2233, https://doi.org/10.5194/wes-9-2217-2024,https://doi.org/10.5194/wes-9-2217-2024, 2024
Short summary
The rotor as a sensor – observing shear and veer from the operational data of a large wind turbine
Marta Bertelè, Paul J. Meyer, Carlo R. Sucameli, Johannes Fricke, Anna Wegner, Julia Gottschall, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1419–1429, https://doi.org/10.5194/wes-9-1419-2024,https://doi.org/10.5194/wes-9-1419-2024, 2024
Short summary

Cited articles

Baas, P., Bosveld, F. C., and Burgers, G.: The impact of atmospheric stability on the near-surface wind over sea in storm conditions, Wind Energy, 19, 187–198, https://doi.org/10.1002/we.1825, 2016. a
Carta, J. A., Velázquez, S., and Cabrera, P.: A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site, Renew. Sust. Energ. Rev., 27, 362–400, https://doi.org/10.1016/j.rser.2013.07.004, 2013. a, b
Chang, T. P.: Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application, Appl. Energ., 88, 272–282, https://doi.org/10.1016/j.apenergy.2010.06.018, 2011. a
Copernicus CDS: Copernicus Climate Data Store, available at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview, last access: 8 April 2021. a
Copernicus CMS: Copernicus Marine Service, available at: https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001, last access: 8 April 2021. a
Download
Share
Altmetrics
Final-revised paper
Preprint