Articles | Volume 9, issue 3
https://doi.org/10.5194/wes-9-601-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-601-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An insight into the capability of the actuator line method to resolve tip vortices
Pier Francesco Melani
Department of Industrial Engineering, University of Florence, 50139 Florence, Italy
Omar Sherif Mohamed
Department of Industrial Engineering, University of Florence, 50139 Florence, Italy
Stefano Cioni
Department of Industrial Engineering, University of Florence, 50139 Florence, Italy
Francesco Balduzzi
Department of Industrial Engineering, University of Florence, 50139 Florence, Italy
Alessandro Bianchini
CORRESPONDING AUTHOR
Department of Industrial Engineering, University of Florence, 50139 Florence, Italy
Related authors
Jörg Alber, Marinos Manolesos, Guido Weinzierl-Dlugosch, Johannes Fischer, Alexander Schönmeier, Christian Navid Nayeri, Christian Oliver Paschereit, Joachim Twele, Jens Fortmann, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci., 7, 943–965, https://doi.org/10.5194/wes-7-943-2022, https://doi.org/10.5194/wes-7-943-2022, 2022
Short summary
Short summary
This paper investigates the potentials and the limitations of mini Gurney flaps and their combination with vortex generators for improved rotor blade performance of wind turbines. These small passive add-ons are installed in order to increase the annual energy production by mitigating the effects of both early separation toward the root region and surface erosion toward the tip region of the blade. As such, this study contributes to the reliable and long-term generation of renewable energy.
Leonardo Pagamonci, Francesco Papi, Gabriel Cojocaru, Marco Belloli, and Alessandro Bianchini
Wind Energ. Sci., 10, 1707–1736, https://doi.org/10.5194/wes-10-1707-2025, https://doi.org/10.5194/wes-10-1707-2025, 2025
Short summary
Short summary
The study presents a critical analysis using wind tunnel experiments and large-eddy simulations aimed at quantifying to what extent turbulence affects the wake structures of a floating turbine undergoing large motions. Analyses show that, whenever realistic turbulence comes into play, only small gains in terms of wake recovery are noticed in comparison to bottom-fixed turbines, suggesting the absence of hypothesized superposition effects between inflow and platform motion.
Alessandro Fontanella, Alberto Fusetti, Stefano Cioni, Francesco Papi, Sara Muggiasca, Giacomo Persico, Vincenzo Dossena, Alessandro Bianchini, and Marco Belloli
Wind Energ. Sci., 10, 1369–1387, https://doi.org/10.5194/wes-10-1369-2025, https://doi.org/10.5194/wes-10-1369-2025, 2025
Short summary
Short summary
This paper investigates the impact of large movements allowed by floating wind turbine foundations on their aerodynamics and wake behavior. Wind tunnel tests with a model turbine reveal that platform motions affect wake patterns and turbulence levels. Insights from these experiments are crucial for optimizing large-scale floating wind farms. The dataset obtained from the experiment is published and can aid in developing simulation tools for floating wind turbines.
Alessandro Fontanella, Stefano Cioni, Francesco Papi, Sara Muggiasca, Alessandro Bianchini, and Marco Belloli
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-106, https://doi.org/10.5194/wes-2025-106, 2025
Preprint under review for WES
Short summary
Short summary
This study explores how the movement of floating wind turbines affects nearby turbines. Using wind tunnel experiments, we found that certain motions of an upstream turbine can improve the energy produced by a downstream one and change the forces it experiences. These effects depend on how the turbines are spaced and aligned. Our results show that the motion of floating turbines plays a key role in how future offshore wind farms should be designed and operated.
Francesco Papi, Jason Jonkman, Amy Robertson, and Alessandro Bianchini
Wind Energ. Sci., 9, 1069–1088, https://doi.org/10.5194/wes-9-1069-2024, https://doi.org/10.5194/wes-9-1069-2024, 2024
Short summary
Short summary
Blade element momentum (BEM) theory is the backbone of many industry-standard aerodynamic models. However, the analysis of floating offshore wind turbines (FOWTs) introduces new challenges, which could put BEM models to the test. This study systematically compares four aerodynamic models, ranging from BEM to computational fluid dynamics, in an attempt to shed light on the unsteady aerodynamic phenomena that are at stake in FOWTs and whether BEM is able to model them appropriately.
Francesco Papi, Giancarlo Troise, Robert Behrens de Luna, Joseph Saverin, Sebastian Perez-Becker, David Marten, Marie-Laure Ducasse, and Alessandro Bianchini
Wind Energ. Sci., 9, 981–1004, https://doi.org/10.5194/wes-9-981-2024, https://doi.org/10.5194/wes-9-981-2024, 2024
Short summary
Short summary
Wind turbines need to be simulated for thousands of hours to estimate design loads. Mid-fidelity numerical models are typically used for this task to strike a balance between computational cost and accuracy. The considerable displacements of floating wind turbines may be a challenge for some of these models. This paper enhances comprehension of how modeling theories affect floating wind turbine loads by comparing three codes across three turbines, simulated in a real environment.
Robert Behrens de Luna, Sebastian Perez-Becker, Joseph Saverin, David Marten, Francesco Papi, Marie-Laure Ducasse, Félicien Bonnefoy, Alessandro Bianchini, and Christian-Oliver Paschereit
Wind Energ. Sci., 9, 623–649, https://doi.org/10.5194/wes-9-623-2024, https://doi.org/10.5194/wes-9-623-2024, 2024
Short summary
Short summary
A novel hydrodynamic module of QBlade is validated on three floating offshore wind turbine concepts with experiments and two widely used simulation tools. Further, a recently proposed method to enhance the prediction of slowly varying drift forces is adopted and tested in varying met-ocean conditions. The hydrodynamic capability of QBlade matches the current state of the art and demonstrates significant improvement regarding the prediction of slowly varying drift forces with the enhanced model.
Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, https://doi.org/10.5194/wes-8-1659-2023, 2023
Short summary
Short summary
Simulations of different fidelities made by the participants of the OC6 project Phase III are compared to wind tunnel wake measurements on a floating wind turbine. Results in the near wake confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the reduced frequency exceeds 0.5. In the far wake, the impact of platform motion is overestimated by simulations and even seems to be oriented to the generation of a wake less prone to dissipation.
Paul Veers, Carlo L. Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Thanasis Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023, https://doi.org/10.5194/wes-8-1071-2023, 2023
Short summary
Short summary
Critical unknowns in the design, manufacturing, and operation of future wind turbine and wind plant systems are articulated, and key research activities are recommended.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O'Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci., 7, 2491–2496, https://doi.org/10.5194/wes-7-2491-2022, https://doi.org/10.5194/wes-7-2491-2022, 2022
Short summary
Short summary
Wind energy will play a central role in the transition of our energy system to a carbon-free future. However, many underlying scientific issues remain to be resolved before wind can be deployed in the locations and applications needed for such large-scale ambitions. The Grand Challenges are the gaps in the science left behind during the rapid growth of wind energy. This article explains the breadth of the unfinished business and introduces 10 articles that detail the research needs.
Alessandro Bianchini, Galih Bangga, Ian Baring-Gould, Alessandro Croce, José Ignacio Cruz, Rick Damiani, Gareth Erfort, Carlos Simao Ferreira, David Infield, Christian Navid Nayeri, George Pechlivanoglou, Mark Runacres, Gerard Schepers, Brent Summerville, David Wood, and Alice Orrell
Wind Energ. Sci., 7, 2003–2037, https://doi.org/10.5194/wes-7-2003-2022, https://doi.org/10.5194/wes-7-2003-2022, 2022
Short summary
Short summary
The paper is part of the Grand Challenges Papers for Wind Energy. It provides a status of small wind turbine technology in terms of technical maturity, diffusion, and cost. Then, five grand challenges that are thought to be key to fostering the development of the technology are proposed. To tackle these challenges, a series of unknowns and gaps are first identified and discussed. Improvement areas are highlighted, within which 10 key enabling actions are finally proposed to the wind community.
Jörg Alber, Marinos Manolesos, Guido Weinzierl-Dlugosch, Johannes Fischer, Alexander Schönmeier, Christian Navid Nayeri, Christian Oliver Paschereit, Joachim Twele, Jens Fortmann, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci., 7, 943–965, https://doi.org/10.5194/wes-7-943-2022, https://doi.org/10.5194/wes-7-943-2022, 2022
Short summary
Short summary
This paper investigates the potentials and the limitations of mini Gurney flaps and their combination with vortex generators for improved rotor blade performance of wind turbines. These small passive add-ons are installed in order to increase the annual energy production by mitigating the effects of both early separation toward the root region and surface erosion toward the tip region of the blade. As such, this study contributes to the reliable and long-term generation of renewable energy.
Rodrigo Soto-Valle, Stefano Cioni, Sirko Bartholomay, Marinos Manolesos, Christian Navid Nayeri, Alessandro Bianchini, and Christian Oliver Paschereit
Wind Energ. Sci., 7, 585–602, https://doi.org/10.5194/wes-7-585-2022, https://doi.org/10.5194/wes-7-585-2022, 2022
Short summary
Short summary
This paper compares different vortex identification methods to evaluate their suitability to study the tip vortices of a wind turbine. The assessment is done through experimental data from the wake of a wind turbine model. Results show comparability in some aspects as well as significant differences, providing evidence to justify further comparisons. Therefore, this study proves that the selection of the most suitable postprocessing methods of tip vortex data is pivotal to ensure robust results.
Cited articles
Bachant, P., Goude, A., and Wosnik, M.: Actuator line modeling of vertical-axis turbines, arXiv [preprint], arXiv:1605.01449 [physics], https://doi.org/10.48550/arXiv.1605.01449, 2018.
Balduzzi, F., Drofelnik, J., Bianchini, A., Ferrara, G., Ferrari, L., and Campobasso, M. S.: Darrieus wind turbine blade unsteady aerodynamics: a three-dimensional Navier-Stokes CFD assessment, Energy, 128, 550–563, https://doi.org/10.1016/j.energy.2017.04.017, 2017.
Balduzzi, F., Marten, D., Bianchini, A., Drofelnik, J., Ferrari, L., Campobasso, M. S., Pechlivanoglou, G., Nayeri, C. N., Ferrara, G., and Paschereit, C. O.: Three-dimensional aerodynamic analysis of a darrieus wind turbine blade using computational fluid dynamics and lifting line theory, J. Eng. Gas Turb. Power, 140, 022602, https://doi.org/10.1115/1.4037750, 2018.
Balduzzi, F., Holst, D., Melani, P. F., Wegner, F., Nayeri, C. N., Ferrara, G., Paschereit, C. O., and Bianchini, A.: Combined Numerical and Experimental Study on the Use of Gurney Flaps for the Performance Enhancement of NACA0021 Airfoil in Static and Dynamic Conditions, J. Eng. Gas Turb. Power, 143, 021004, https://doi.org/10.1115/1.4048908, 2021.
Bergua, R., Robertson, A., Jonkman, J., Branlard, E., Fontanella, A., Belloli, M., Schito, P., Zasso, A., Persico, G., Sanvito, A., Amet, E., Brun, C., Campaña-Alonso, G., Martín-San-Román, R., Cai, R., Cai, J., Qian, Q., Maoshi, W., Beardsell, A., Pirrung, G., Ramos-García, N., Shi, W., Fu, J., Corniglion, R., Lovera, A., Galván, J., Nygaard, T. A., dos Santos, C. R., Gilbert, P., Joulin, P.-A., Blondel, F., Frickel, E., Chen, P., Hu, Z., Boisard, R., Yilmazlar, K., Croce, A., Harnois, V., Zhang, L., Li, Y., Aristondo, A., Mendikoa Alonso, I., Mancini, S., Boorsma, K., Savenije, F., Marten, D., Soto-Valle, R., Schulz, C. W., Netzband, S., Bianchini, A., Papi, F., Cioni, S., Trubat, P., Alarcon, D., Molins, C., Cormier, M., Brüker, K., Lutz, T., Xiao, Q., Deng, Z., Haudin, F., and Goveas, A.: OC6 project Phase III: validation of the aerodynamic loading on a wind turbine rotor undergoing large motion caused by a floating support structure, Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, 2023.
Boorsma, K., Wenz, F., Lindenburg, K., Aman, M., and Kloosterman, M.: Validation and accommodation of vortex wake codes for wind turbine design load calculations, Wind Energ. Sci., 5, 699–719, https://doi.org/10.5194/wes-5-699-2020, 2020.
Boorsma, K., Schepers, G., Aagard Madsen, H., Pirrung, G., Sørensen, N., Bangga, G., Imiela, M., Grinderslev, C., Meyer Forsting, A., Shen, W. Z., Croce, A., Cacciola, S., Schaffarczyk, A. P., Lobo, B., Blondel, F., Gilbert, P., Boisard, R., Höning, L., Greco, L., Testa, C., Branlard, E., Jonkman, J., and Vijayakumar, G.: Progress in the validation of rotor aerodynamic codes using field data, Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023, 2023.
Branlard, E.: Wind Turbine Aerodynamics and Vorticity-Based Methods, in: 1st Edn., Springer, https://doi.org/10.1007/978-3-319-55164-7, 2017.
Churchfield, M. J., Schreck, S. J., Martinez, L. A., Meneveau, C., and Spalart, P. R.: An Advanced Actuator Line Method for Wind Energy Applications and Beyond, in: 35th Wind Energy Symposium, American Institute of Aeronautics and Astronautics, 9–13 January 2017, Grapevine, Texas, https://doi.org/10.2514/6.2017-1998, 2017.
Cooper, P.: Development and analysis of vertical-axis wind turbines, Wind Power Generation and Wind Turbine Design, 277–302, https://ro.uow.edu.au/engpapers/2917 (last access: 7 July 2023), 2010.
Dağ, K. O. and Sørensen, J.: A new tip correction for actuator line computations, Wind Energy, 23, 148–160, https://doi.org/10.1002/we.2419, 2020.
Dossena, V., Persico, G., Paradiso, B., Battisti, L., Dell'Anna, S., Brighenti, A., and Benini, E.: An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment, J. Energ. Resour. Technol., 137, 051207, https://doi.org/10.1115/1.4030448, 2015.
Ferreira, C. S., Van Bussel, G., and Van Kuik, G.: 2D CFD simulation of dynamic stall on a vertical axis wind turbine: Verification and validation with PIV measurements, in: Collection of Technical Papers – 45th AIAA Aerospace Sciences Meeting, 8–11 January 2007, Reno, Nevada, 16191–16201, https://doi.org/10.2514/6.2007-1367, 2007.
Glauert, H.: Airplane Propellers, edited by: Durand, W. F., Springer, Berlin, Heidelberg, 169–360, https://doi.org/10.1007/978-3-642-91487-4_3, 1935.
Greco, L. and Testa, C.: Wind turbine unsteady aerodynamics and performance by a free-wake panel method, Renew. Energy, 164, 444–459, https://doi.org/10.1016/j.renene.2020.08.002, 2021.
Jeong, J. and Hussain, F.: On the identification of a vortex, J. Fluid Mech., 285, 69–94, https://doi.org/10.1017/S0022112095000462, 1995.
Jha, P. K. and Schmitz, S.: Actuator curve embedding – an advanced actuator line model, J. Fluid Mech., 834, R2-1–R2-11, https://doi.org/10.1017/jfm.2017.793, 2018.
Jha, P. K., Churchfield, M. J., Moriarty, P. J., and Schmitz, S.: Guidelines for Volume Force Distributions Within Actuator Line Modeling of Wind Turbines on Large-Eddy Simulation-Type Grids, J. Sol. Energ. Eng., 136, 031003, https://doi.org/10.1115/1.4026252, 2014.
Jost, E., Klein, L., Leipprand, H., Lutz, T., and Krämer, E.: Extracting the angle of attack on rotor blades from CFD simulations, Wind Energy, 21, 807–822, https://doi.org/10.1002/we.2196, 2018.
Marten, D., Lennie, M., Pechlivanoglou, G., Nayeri, C. N., and Paschereit, C. O.: Implementation, optimization and validation of a nonlinear lifting line free vortex wake module within the wind turbine simulation code qblade, in: Proceedings of the ASME Turbo Expo, 15–19 June 2015, Montreal, Quebec, Canada, https://doi.org/10.1115/GT2015-43265, 2015.
Martinez, L., Leonardi, S., Churchfield, M., and Moriarty, P.: A Comparison of Actuator Disk and Actuator Line Wind Turbine Models and Best Practices for Their Use, in: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics, https://doi.org/10.2514/6.2012-900, 2012.
Martínez-Tossas, L. A. and Meneveau, C.: Filtered lifting line theory and application to the actuator line model, J. Fluid Mech., 863, 269–292, https://doi.org/10.1017/jfm.2018.994, 2019.
Martínez-Tossas, L. A., Churchfield, M. J., and Meneveau, C.: A Highly Resolved Large-Eddy Simulation of a Wind Turbine using an Actuator Line Model with Optimal Body Force Projection, J. Phys.: Conf. Ser., 753, 082014, https://doi.org/10.1088/1742-6596/753/8/082014, 2016.
Martínez-Tossas, L. A., Churchfield, M. J., and Meneveau, C.: Optimal smoothing length scale for actuator line models of wind turbine blades based on Gaussian body force distribution, Wind Energy, 20, 1083–1096, https://doi.org/10.1002/we.2081, 2017.
Mauz, M., Rautenberg, A., Platis, A., Cormier, M., and Bange, J.: First identification and quantification of detached-tip vortices behind a wind energy converter using fixed-wing unmanned aircraft system, Wind Energ. Sci., 4, 451–463, https://doi.org/10.5194/wes-4-451-2019, 2019.
Melani, P. F., Balduzzi, F., Ferrara, G., and Bianchini, A.: How to extract the angle attack on airfoils in cycloidal motion from a flow field solved with computational fluid dynamics? Development and verification of a robust computational procedure, Energ. Convers. Manage., 223, 113284, https://doi.org/10.1016/j.enconman.2020.113284, 2020.
Melani, P. F., Balduzzi, F., and Bianchini, A.: A Robust Procedure to Implement Dynamic Stall Models Into Actuator Line Methods for the Simulation of Vertical-Axis Wind Turbines, J. Eng. Gas Turb. Power, 143, 111008, https://doi.org/10.1115/1.4051909, 2021a.
Melani, P. F., Balduzzi, F., Ferrara, G., and Bianchini, A.: Tailoring the actuator line theory to the simulation of Vertical-Axis Wind Turbines, Energ. Convers. Manage., 243, 114422, https://doi.org/10.1016/j.enconman.2021.114422, 2021b.
Melani, P. F., Balduzzi, F., and Bianchini, A.: Simulating tip effects in vertical-axis wind turbines with the actuator line method, J. Phys.: Conf. Ser., 2265, 032028, https://doi.org/10.1088/1742-6596/2265/3/032028, 2022.
Melani, P. F., Sherif Mohamed, O., Cioni, S., Balduzzi, F., and Bianchini, A.: Data of the publication “An insight into the capability of the actuator line method to resolve tip vortices” [Data set]. In Wind Energy Science, Zenodo [data set], https://doi.org/10.5281/zenodo.10809726, 2024.
Meyer Forsting, A. R., Pirrung, G. R., and Ramos-García, N.: A vortex-based tip/smearing correction for the actuator line, Wind Energ. Sci., 4, 369–383, https://doi.org/10.5194/wes-4-369-2019, 2019.
Mohamed, O. S., Melani, P. F., Balduzzi, F., Ferrara, G., and Bianchini, A.: An insight on the key factors influencing the accuracy of the actuator line method for use in vertical-axis turbines: Limitations and open challenges, Energ. Convers. Manage., 270, 116249, https://doi.org/10.1016/j.enconman.2022.116249, 2022.
Perez-Becker, S., Papi, F., Saverin, J., Marten, D., Bianchini, A., and Paschereit, C. O.: Is the Blade Element Momentum theory overestimating wind turbine loads? – An aeroelastic comparison between OpenFAST's AeroDyn and QBlade's Lifting-Line Free Vortex Wake method, Wind Energ. Sci., 5, 721–743, https://doi.org/10.5194/wes-5-721-2020, 2020.
Prandtl, L. and Tietjens, L. O.: Fundamentals of Hydro- and Aeromechanics, McGraw Hill, ISBN 9780486603742, 1934.
Rahimi, H., Schepers, J. G., Shen, W. Z., García, N. R., Schneider, M. S., Micallef, D., Ferreira, C. J. S., Jost, E., Klein, L., and Herráez, I.: Evaluation of different methods for determining the angle of attack on wind turbine blades with CFD results under axial inflow conditions, Renew. Energy, 125, 866–876, https://doi.org/10.1016/j.renene.2018.03.018, 2018.
Schollenberger, M., Lutz, T., and Krämer, E.: Boundary Condition Based Actuator Line Model to Simulate the Aerodynamic Interactions at Wingtip Mounted Propellers, in: New Results in Numerical and Experimental Fluid Mechanics XII, Springer, Cham, 608–618, https://doi.org/10.1007/978-3-030-25253-3_58, 2020.
Shamsoddin, S. and Porté-Agel, F.: Large Eddy Simulation of Vertical Axis Wind Turbine Wakes, Energies, 7, 890–912, https://doi.org/10.3390/en7020890, 2014.
Shen, W. Z., Zhu, W. J., and Sørensen, J. N.: Study of tip loss corrections using CFD rotor computations, J. Phys.: Conf. Ser., 555, 012094, https://doi.org/10.1088/1742-6596/555/1/012094, 2014.
Shives, M. and Crawford, C.: Mesh and load distribution requirements for actuator line CFD simulations, Wind Energy, 16, 1183–1196, https://doi.org/10.1002/we.1546, 2013.
Sørensen, J. N. and Shen, W. Z.: Numerical Modeling of Wind Turbine Wakes, J. Fluids Eng., 124, 393–399,https://doi.org/10.1115/1.1471361, 2002.
Sørensen, J. N., Dag, K. O., and Ramos-García, N.: A refined tip correction based on decambering, Wind Energy, 19, 787–802, https://doi.org/10.1002/we.1865, 2016.
Soto-Valle, R., Bartholomay, S., Alber, J., Manolesos, M., Nayeri, C. N., and Paschereit, C. O.: Determination of the angle of attack on a research wind turbine rotor blade using surface pressure measurements, Wind Energ. Sci., 5, 1771–1792, https://doi.org/10.5194/wes-5-1771-2020, 2020.
Soto-Valle, R., Noci, S., Papi, F., Bartholomay, S., Nayeri, C. N., Paschereit, C. O., and Bianchini, A.: Development and assessment of a method to determine the angle of attack on an operating wind turbine by matching onboard pressure measurements with panel method simulations, E3S Web Conf., 312, 08003, https://doi.org/10.1051/e3sconf/202131208003, 2021.
Soto-Valle, R., Cioni, S., Bartholomay, S., Manolesos, M., Nayeri, C. N., Bianchini, A., and Paschereit, C. O.: Vortex identification methods applied to wind turbine tip vortices, Wind Energ. Sci., 7, 585–602, https://doi.org/10.5194/wes-7-585-2022, 2022.
Timmer, W. A.: Two-Dimensional Low-Reynolds Number Wind Tunnel Results for Airfoil NACA 0018, Wind Eng., 32, 525–537, https://doi.org/10.1260/030952408787548848, 2008.
van der Wall, B. G. and Richard, H.: Analysis methodology for 3C-PIV data of rotary wing vortices, Exp. Fluids, 40, 798–812, https://doi.org/10.1007/s00348-006-0117-x, 2006.
Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C. L., Carlson, O., Clifton, A., Green, J., Green, P., Holttinen, H., Laird, D., Lehtomäki, V., Lundquist, J. K., Manwell, J., Marquis, M., Meneveau, C., Moriarty, P., Munduate, X., Muskulus, M., Naughton, J., Pao, L., Paquette, J., Peinke, J., Robertson, A., Rodrigo, J. S., Sempreviva, A. M., Smith, J. C., Tuohy, A., and Wiser, R.: Grand challenges in the science of wind energy, Science, 366, 6464, https://doi.org/10.1126/science.aau2027, 2019.
Veers, P., Bottasso, C. L., Manuel, L., Naughton, J., Pao, L., Paquette, J., Robertson, A., Robinson, M., Ananthan, S., Barlas, T., Bianchini, A., Bredmose, H., Horcas, S. G., Keller, J., Madsen, H. A., Manwell, J., Moriarty, P., Nolet, S., and Rinker, J.: Grand challenges in the design, manufacture, and operation of future wind turbine systems, Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023, 2023.
Yamauchi, G., Burley, C., Mercker, E., Pengel, K., and Janakiram, R.: Flow Measurements of an Isolated Model Tilt Rotor, Annu. Forum Proc.-Am. Helicopt. Soc., 1, 891–909, 1999.
Short summary
The actuator line method (ALM) is a powerful tool for wind turbine simulation but struggles to resolve tip effects. The reason is still unclear. To investigate this, we use advanced angle of attack sampling and vortex tracking techniques to analyze the flow around a NACA0018 finite wing, simulated with ALM and blade-resolved computational fluid dynamics. Results show that the ALM can account for tip effects if the correct angle of attack sampling and force projection strategies are adopted.
The actuator line method (ALM) is a powerful tool for wind turbine simulation but struggles to...
Altmetrics
Final-revised paper
Preprint