Articles | Volume 1, issue 2
https://doi.org/10.5194/wes-1-255-2016
https://doi.org/10.5194/wes-1-255-2016
Research article
 | 
23 Nov 2016
Research article |  | 23 Nov 2016

Multi-fidelity fluid–structure interaction analysis of a membrane blade concept in non-rotating, uniform flow condition

Mehran Saeedi, Kai-Uwe Bletzinger, and Roland Wüchner

Related subject area

Aerodynamics and hydrodynamics
FLOW Estimation and Rose Superposition (FLOWERS): an integral approach to engineering wake models
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022,https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary
High-Reynolds-number investigations on the ability of the full-scale e-TellTale sensor to detect flow separation on a wind turbine blade section
Antoine Soulier, Caroline Braud, Dimitri Voisin, and Frédéric Danbon
Wind Energ. Sci., 7, 1043–1052, https://doi.org/10.5194/wes-7-1043-2022,https://doi.org/10.5194/wes-7-1043-2022, 2022
Short summary
Experimental investigation of mini Gurney flaps in combination with vortex generators for improved wind turbine blade performance
Jörg Alber, Marinos Manolesos, Guido Weinzierl-Dlugosch, Johannes Fischer, Alexander Schönmeier, Christian Navid Nayeri, Christian Oliver Paschereit, Joachim Twele, Jens Fortmann, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci., 7, 943–965, https://doi.org/10.5194/wes-7-943-2022,https://doi.org/10.5194/wes-7-943-2022, 2022
Short summary
Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines
Mohammad Sadman Sakib and D. Todd Griffith
Wind Energ. Sci., 7, 677–696, https://doi.org/10.5194/wes-7-677-2022,https://doi.org/10.5194/wes-7-677-2022, 2022
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022,https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary

Cited articles

Abdulrahim, M., Garcia, H., and Lind, R.: Flight Characteristics of Shaping the Membrane Wing of a Micro Air Vehicle, J. Aircraft, 42, 131–137, https://doi.org/10.2514/1.4782, 2005.
Baumgärtner, D., Wolf, J., Rossi, R., Wüchner, R., and Dadvand, P.: Contribution to the Fluid-Structure Interaction Analysis of Ultra-Lightweight Structures using an Embedded Approach, International Center for Numerical Methods in Engineering, Vol. CIMNE Monograph M152, 2015.
Barbarino, S., Dettmer, W., and Friswell, M.: Morphing Trailing Edges with Shape Memory Alloy Rods, ICAST, 4–6 October, State College, PA, USA, 2010.
Barlas, A. K., Tibaldi, C., Zahle, F., and Madsen, H.: Aeroelastic Optimization of a 10 MW Wind Turbine Blade with Active Trailing Edge Flaps, 34th Wind Energy Symposium, AIAA, https://doi.org/10.2514/6.2016-1262, 2016.
Bletzinger, K.-U. and Ramm, E.: A General Finite Element Approach to the form Finding of Tensile Structures by the Updated Reference Strategy, Int. J. Space Struct., 14, 131–145, 1999.
Download
Short summary
Fluid–structure interaction analysis of a membrane blade concept has been performed for a non-rotating blade under steady inflow conditions. The membrane blade consists of a rigid mast at the leading edge, ribs along the blade, tensioned edge cables at the trailing edge, and membranes forming the upper and lower surface of the blade. The studied membrane blade shows a higher lift curve slope and higher lift-to-drag ratio compared with its rigid-blade counterpart.
Altmetrics
Final-revised paper
Preprint