Articles | Volume 10, issue 2
https://doi.org/10.5194/wes-10-361-2025
https://doi.org/10.5194/wes-10-361-2025
Research article
 | 
04 Feb 2025
Research article |  | 04 Feb 2025

Observations of wind farm wake recovery at an operating wind farm

Raghavendra Krishnamurthy, Rob K. Newsom, Colleen M. Kaul, Stefano Letizia, Mikhail Pekour, Nicholas Hamilton, Duli Chand, Donna Flynn, Nicola Bodini, and Patrick Moriarty

Related authors

Operational wind plants increase planetary boundary layer height: an observational study
Aliza Abraham, Matteo Puccioni, Arianna Jordan, Emina Maric, Nicola Bodini, Nicholas Hamilton, Stefano Letizia, Petra M. Klein, Elizabeth N. Smith, Sonia Wharton, Jonathan Gero, Jamey D. Jacob, Raghavendra Krishnamurthy, Rob K. Newsom, Mikhail Pekour, William Radünz, and Patrick Moriarty
Wind Energ. Sci., 10, 1681–1705, https://doi.org/10.5194/wes-10-1681-2025,https://doi.org/10.5194/wes-10-1681-2025, 2025
Short summary
Best estimate of the planetary boundary layer height from multiple remote sensing measurements
Damao Zhang, Jennifer Comstock, Chitra Sivaraman, Kefei Mo, Raghavendra Krishnamurthy, Jingjing Tian, Tianning Su, Zhanqing Li, and Natalia Roldán-Henao
Atmos. Meas. Tech., 18, 3453–3475, https://doi.org/10.5194/amt-18-3453-2025,https://doi.org/10.5194/amt-18-3453-2025, 2025
Short summary
Characterization of HRRR simulated Rotor Layer Wind Speeds and Clouds along Coast of California
Jungmin Lee, Virendra P. Ghate, Arka Mitra, Lee M. Miller, Raghavendra Krishnamurthy, and Ulrike Egerer
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-108,https://doi.org/10.5194/wes-2025-108, 2025
Preprint under review for WES
Short summary
Methods for Pacific Outer Continental Shelf Wind Characterization for Offshore Wind Development
Macy Frost Chang, Raghavendra Krishnamurthy, and Fotini Katopodes Chow
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-85,https://doi.org/10.5194/wes-2025-85, 2025
Preprint under review for WES
Short summary
Large-eddy simulation of an atmospheric bore and associated gravity wave effects on wind farm performance in the southern Great Plains
Adam S. Wise, Robert S. Arthur, Aliza Abraham, Sonia Wharton, Raghavendra Krishnamurthy, Rob Newsom, Brian Hirth, John Schroeder, Patrick Moriarty, and Fotini K. Chow
Wind Energ. Sci., 10, 1007–1032, https://doi.org/10.5194/wes-10-1007-2025,https://doi.org/10.5194/wes-10-1007-2025, 2025
Short summary

Cited articles

Abkar, M. and Porté-Agel, F.: The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms, Energies, 6, 2338–2361, https://doi.org/10.3390/en6052338, 2013. 
Abkar, M. and Porté-Agel, F.: Mean and turbulent kinetic energy budgets inside and above very large wind farms under conventionally-neutral condition, Renew. Energ., 70, 142–152, https://doi.org/10.1016/j.renene.2014.03.050, 2014. 
Abkar, M. and Porté-Agel, F.: Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study, Physics of fluids, 27, 035104, https://doi.org/10.1063/1.4913695, 2015. 
Ahsbahs, T., Nygaard, N. G., Newcombe, A., and Badger, M.: Wind farm wakes from SAR and Doppler radar, Remote Sens., 12, 462, https://doi.org/10.3390/rs12030462, 2020. 
Allaerts, D. and Meyers, J.: Boundary-layer development and gravity waves in conventionally neutral wind farms, J. Fluid Mech., 814, 95–130, https://doi.org/10.1017/jfm.2017.11, 2017. 
Download
Short summary
This study examines how atmospheric phenomena affect the recovery of wind farm wake – the disturbed air behind turbines. In regions like Oklahoma, where wind farms are often clustered, understanding wake recovery is crucial. We found that wind farms can alter phenomena like low-level jets, which are common in Oklahoma, by deflecting them above the wind farm. As a result, the impact of wakes can be observed up to 1–2 km above ground level.
Share
Altmetrics
Final-revised paper
Preprint