Articles | Volume 2, issue 1
Wind Energ. Sci., 2, 257–267, 2017
https://doi.org/10.5194/wes-2-257-2017

Special issue: The Science of Making Torque from Wind (TORQUE) 2016

Wind Energ. Sci., 2, 257–267, 2017
https://doi.org/10.5194/wes-2-257-2017

Research article 23 May 2017

Research article | 23 May 2017

Lidar-based wake tracking for closed-loop wind farm control

Steffen Raach et al.

Related authors

Feedforward-Feedback wake redirection for wind farm control
Steffen Raach, Bart Doekemeijer, Sjoerd Boersma, Jan-Willem van Wingerden, and Po Wen Cheng
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-54,https://doi.org/10.5194/wes-2019-54, 2019
Publication in WES not foreseen
Short summary
Analysis of control-oriented wake modeling tools using lidar field results
Jennifer Annoni, Paul Fleming, Andrew Scholbrock, Jason Roadman, Scott Dana, Christiane Adcock, Fernando Porte-Agel, Steffen Raach, Florian Haizmann, and David Schlipf
Wind Energ. Sci., 3, 819–831, https://doi.org/10.5194/wes-3-819-2018,https://doi.org/10.5194/wes-3-819-2018, 2018
Short summary

Related subject area

Wind and turbulence
Four-dimensional wind field generation for the aeroelastic simulation of wind turbines with lidars
Yiyin Chen, Feng Guo, David Schlipf, and Po Wen Cheng
Wind Energ. Sci., 7, 539–558, https://doi.org/10.5194/wes-7-539-2022,https://doi.org/10.5194/wes-7-539-2022, 2022
Short summary
Can reanalysis products outperform mesoscale numerical weather prediction models in modeling the wind resource in simple terrain?
Vincent Pronk, Nicola Bodini, Mike Optis, Julie K. Lundquist, Patrick Moriarty, Caroline Draxl, Avi Purkayastha, and Ethan Young
Wind Energ. Sci., 7, 487–504, https://doi.org/10.5194/wes-7-487-2022,https://doi.org/10.5194/wes-7-487-2022, 2022
Short summary
The five main influencing factors for lidar errors in complex terrain
Tobias Klaas-Witt and Stefan Emeis
Wind Energ. Sci., 7, 413–431, https://doi.org/10.5194/wes-7-413-2022,https://doi.org/10.5194/wes-7-413-2022, 2022
Short summary
Meso- to microscale modeling of atmospheric stability effects on wind turbine wake behavior in complex terrain
Adam S. Wise, James M. T. Neher, Robert S. Arthur, Jeffrey D. Mirocha, Julie K. Lundquist, and Fotini K. Chow
Wind Energ. Sci., 7, 367–386, https://doi.org/10.5194/wes-7-367-2022,https://doi.org/10.5194/wes-7-367-2022, 2022
Short summary
Validation of a coupled atmospheric–aeroelastic model system for wind turbine power and load calculations
Sonja Krüger, Gerald Steinfeld, Martin Kraft, and Laura J. Lukassen
Wind Energ. Sci., 7, 323–344, https://doi.org/10.5194/wes-7-323-2022,https://doi.org/10.5194/wes-7-323-2022, 2022
Short summary

Cited articles

Boersma, S., Doekemeijer, B., Gebraad, P., Fleming, P., Annoni, J., Scholbrock, A., Frederik, J., and van Wingerden, J.-W.: A Tutorial on Control-Oriented Modeling and Control of Wind Farms, in: Proceedings of the American Control Conference (ACC), Seattle, USA, 2017.
Borisade, F., Luhmann, B., Raach, S., and Cheng, P. W.: Shadow Effects in an Offshore Wind Farm – Potential of Vortex Methods for Wake Modelling, in: Proceedings of the German Wind Energy Conference DEWEK, Bremen, Germany, 2015.
Churchfield, M. and Lee, S.: NWTC design codes-SOWFA, available at: http://wind.nrel.gov/designcodes/simulators/SOWFA (last access: 15 May 2017), 2012.
Doubrawa, P., Barthelmie, R. J., Wang, H., and Churchfield, M. J.: A stochastic wind turbine wake model based on new metrics for wake characterization, Wind Energy, 20, 449–463, https://doi.org/10.1002/we.2015, 2017.
Fleming, P., Gebraad, P. M., Lee, S., Wingerden, J.-W., Johnson, K., Churchfield, M., Michalakes, J., Spalart, P., and Moriarty, P.: Simulation comparison of wake mitigation control strategies for a two-turbine case, Wind Energy, 18, 2135–2143, 2014a.
Download
Short summary
This work provides a possible solution to closed-loop flow control in a wind farm. The remote sensing technology, lidar, which is a laser-based measurement system, is used to obtain wind speed information behind a wind turbine. The measurements are processed using a model-based approach to estimate position information of the wake. The information is then used in a controller to redirect the wake to the desired position. Altogether, the concept aims to increase the power output of a wind farm.