Articles | Volume 3, issue 1
https://doi.org/10.5194/wes-3-345-2018
https://doi.org/10.5194/wes-3-345-2018
Research article
 | 
07 Jun 2018
Research article |  | 07 Jun 2018

The second curvature correction for the straight segment approximation of periodic vortex wakes

David H. Wood

Related authors

Current status and grand challenges for small wind turbine technology
Alessandro Bianchini, Galih Bangga, Ian Baring-Gould, Alessandro Croce, José Ignacio Cruz, Rick Damiani, Gareth Erfort, Carlos Simao Ferreira, David Infield, Christian Navid Nayeri, George Pechlivanoglou, Mark Runacres, Gerard Schepers, Brent Summerville, David Wood, and Alice Orrell
Wind Energ. Sci., 7, 2003–2037, https://doi.org/10.5194/wes-7-2003-2022,https://doi.org/10.5194/wes-7-2003-2022, 2022
Short summary
Investigating Horizontal Axis Wind Turbine Aerodynamics Using Cascade Flows
Narges Golmirzaee and David H. Wood
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-76,https://doi.org/10.5194/wes-2022-76, 2022
Preprint withdrawn
Short summary
Some effects of flow expansion on the aerodynamics of horizontal-axis wind turbines
David H. Wood and Eric J. Limacher
Wind Energ. Sci., 6, 1413–1425, https://doi.org/10.5194/wes-6-1413-2021,https://doi.org/10.5194/wes-6-1413-2021, 2021
Short summary
An impulse-based derivation of the Kutta–Joukowsky equation for wind turbine thrust
Eric J. Limacher and David H. Wood
Wind Energ. Sci., 6, 191–201, https://doi.org/10.5194/wes-6-191-2021,https://doi.org/10.5194/wes-6-191-2021, 2021
Short summary

Related subject area

Aerodynamics and hydrodynamics
FLOW Estimation and Rose Superposition (FLOWERS): an integral approach to engineering wake models
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022,https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary
High-Reynolds-number investigations on the ability of the full-scale e-TellTale sensor to detect flow separation on a wind turbine blade section
Antoine Soulier, Caroline Braud, Dimitri Voisin, and Frédéric Danbon
Wind Energ. Sci., 7, 1043–1052, https://doi.org/10.5194/wes-7-1043-2022,https://doi.org/10.5194/wes-7-1043-2022, 2022
Short summary
Experimental investigation of mini Gurney flaps in combination with vortex generators for improved wind turbine blade performance
Jörg Alber, Marinos Manolesos, Guido Weinzierl-Dlugosch, Johannes Fischer, Alexander Schönmeier, Christian Navid Nayeri, Christian Oliver Paschereit, Joachim Twele, Jens Fortmann, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci., 7, 943–965, https://doi.org/10.5194/wes-7-943-2022,https://doi.org/10.5194/wes-7-943-2022, 2022
Short summary
Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines
Mohammad Sadman Sakib and D. Todd Griffith
Wind Energ. Sci., 7, 677–696, https://doi.org/10.5194/wes-7-677-2022,https://doi.org/10.5194/wes-7-677-2022, 2022
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022,https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary

Cited articles

Bhagwat, M. J. and Leishman, J. G.: Self-Induced Velocity of a Vortex Ring Using Straight-Line Segmentation, AIAA Journal, 59, 1–7, 2014. a, b
Govindarajan, B. M. and Leishman, J. G.: Curvature Corrections to Improve the Accuracy of Free-Vortex Methods, J. Aircraft, 53, 378–386, 2016. a, b, c
Katz, J. and Plotkin, A.: Low-Speed Aerodynamics, 2nd edition, C.U.P., Cambridge, 2001. a
Kim, C. J., Park, S. H., Sung, S. K., and Jung, S. N.: Dynamic modeling and analysis of vortex filament motion using a novel curve-fitting method, Chinese J. Aeronaut., 29, 53–65, 2016. a, b
Kuibin, P. A. and Okulov, V. L.: Self-induced motion and asymptotic expansion of the velocity field in the vicinity of a helical vortex filament, Phys. Fluids, 10, 607–614, 1998. a
Download
Short summary
The vortices in the wakes of wind turbines are often approximated by short, straight vortex segments, which cannot reproduce the curvature singularity in the induced velocity. They can also have a second error due to the periodicity: the vortices return to close proximity of the point at which the velocity is calculated. The second error is assessed by representing the far wake of a turbine as a row of vortex rings. The error is quantified and a simple correction is developed.
Altmetrics
Final-revised paper
Preprint