Articles | Volume 7, issue 2
https://doi.org/10.5194/wes-7-741-2022
https://doi.org/10.5194/wes-7-741-2022
Research article
 | 
31 Mar 2022
Research article |  | 31 Mar 2022

Fast yaw optimization for wind plant wake steering using Boolean yaw angles

Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming

Related authors

Gradient-Based Wind Farm Layout Optimization Results Compared with Large-Eddy Simulations
Jared J. Thomas, Christopher J. Bay, Andrew P. J. Stanley, and Andrew Ning
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-4,https://doi.org/10.5194/wes-2022-4, 2022
Revised manuscript not accepted
Short summary
A model to calculate fatigue damage caused by partial waking during wind farm optimization
Andrew P. J. Stanley, Jennifer King, Christopher Bay, and Andrew Ning
Wind Energ. Sci., 7, 433–454, https://doi.org/10.5194/wes-7-433-2022,https://doi.org/10.5194/wes-7-433-2022, 2022
Short summary
Objective and algorithm considerations when optimizing the number and placement of turbines in a wind power plant
Andrew P. J. Stanley, Owen Roberts, Jennifer King, and Christopher J. Bay
Wind Energ. Sci., 6, 1143–1167, https://doi.org/10.5194/wes-6-1143-2021,https://doi.org/10.5194/wes-6-1143-2021, 2021
Short summary

Cited articles

Adaramola, M. and Krogstad, P.-Å.: Experimental investigation of wake effects on wind turbine performance, Renew. Energy, 36, 2078–2086, 2011. a
Administration, U. E. I.: Electric power monthly with data for April 2021, Table ES1.A, Tech. rep., US Department of Energy, https://www.eia.gov/electricity/monthly/ (last access: 28 March 2022), 2021a. a
Administration, U. E. I.: Monthly energy review, Table 7.2a, Tech. Rep. DOE/EIA-0035 (2021/6), Office of Energy Statistics, US Department of Energy, https://www.eia.gov/totalenergy/data/monthly/archive/00352106.pdf (last access: 28 March 2022), 2021b. a
Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, J. Fluid Mech., 806, 506–541, 2016. a
Crespo, A., Herna, J., Crespo, A., and Hernandez, J.: Turbulence characteristics in wind-turbine wakes, J. Wind Eng. Indust. Aerodynam., 61, 71–85, 1996. a
Download
Short summary
In wind plants, turbines can be yawed to steer their wakes away from downstream turbines and achieve an increase in plant power. The yaw angles become expensive to solve for in large farms. This paper presents a new method to solve for the optimal turbine yaw angles in a wind plant. The yaw angles are defined as Boolean variables – each turbine is either yawed or nonyawed. With this formulation, most of the gains from wake steering can be reached with a large reduction in computational expense.
Share
Altmetrics
Final-revised paper
Preprint