Articles | Volume 3, issue 1
Wind Energ. Sci., 3, 75–95, 2018
https://doi.org/10.5194/wes-3-75-2018
Wind Energ. Sci., 3, 75–95, 2018
https://doi.org/10.5194/wes-3-75-2018
Research article
06 Mar 2018
Research article | 06 Mar 2018

A control-oriented dynamic wind farm model: WFSim

Sjoerd Boersma et al.

Related authors

Online model calibration for a simplified LES model in pursuit of real-time closed-loop wind farm control
Bart M. Doekemeijer, Sjoerd Boersma, Lucy Y. Pao, Torben Knudsen, and Jan-Willem van Wingerden
Wind Energ. Sci., 3, 749–765, https://doi.org/10.5194/wes-3-749-2018,https://doi.org/10.5194/wes-3-749-2018, 2018
Short summary

Related subject area

Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022,https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022,https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Large-eddy simulation of airborne wind energy farms
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022,https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022,https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary

Cited articles

Annoni, J. and Seiler, P.: A low-order model for wind farm control, P. Amer. Contr. Conf., https://doi.org/10.1109/ACC.2015.7170981, 2015.
Annoni, J., Seiler, P., Johnson, K., Fleming, P. A., and Gebraad, P. M. O.: Evaluating wake models for wind farm control, P. Amer. Contr. Conf., https://doi.org/10.1109/ACC.2014.6858970, 2014.
Avila, M., Folch, A., Houzeaux, G., Eguzkitza, B., Prieto, L., and Cabezøn, D.: A Parallel CFD Model for Wind Farms, Procedia Comput. Sci., 18, 2157–2166, 2013.
Barthelmie, R., Frandsen, S., Hansen, K., Schepers, J., Rados, K., Schlez, W., Neubert, A., Jensen, L., and Neckelmann, S.: Modelling the impact of wakes on power output at Nysted and Horns rev, European Wind Energy Conference, 2009.
Boersma, S., Gebraad, P. M. O., Vali, M., Doekemeijer, B. M., and van Wingerden, J. W.: A control-oriented dynamic wind farm flow model: “WFSim”, J. Phys. Conf. Ser., https://doi.org/10.1088/1742-6596/753/3/032005, 2016a.
Download
Short summary
Controlling the flow within wind farms to reduce the fatigue loads and provide grid facilities such as the delivery of a demanded power is a challenging control problem due to the underlying time-varying non-linear wake dynamics. In this paper, a control-oriented dynamical wind farm model is presented and validated with high-fidelity wind farm models. In contrast to the latter models, the model presented in this work is computationally efficient and hence suitable for online wind farm control.