Articles | Volume 3, issue 1
Wind Energ. Sci., 3, 75–95, 2018
https://doi.org/10.5194/wes-3-75-2018
Wind Energ. Sci., 3, 75–95, 2018
https://doi.org/10.5194/wes-3-75-2018
Research article
06 Mar 2018
Research article | 06 Mar 2018

A control-oriented dynamic wind farm model: WFSim

Sjoerd Boersma et al.

Related authors

Online model calibration for a simplified LES model in pursuit of real-time closed-loop wind farm control
Bart M. Doekemeijer, Sjoerd Boersma, Lucy Y. Pao, Torben Knudsen, and Jan-Willem van Wingerden
Wind Energ. Sci., 3, 749–765, https://doi.org/10.5194/wes-3-749-2018,https://doi.org/10.5194/wes-3-749-2018, 2018
Short summary

Related subject area

Wind and turbulence
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022,https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary
Development of an automatic thresholding method for wake meandering studies and its application to the data set from scanning wind lidar
Maria Krutova, Mostafa Bakhoday-Paskyabi, Joachim Reuder, and Finn Gunnar Nielsen
Wind Energ. Sci., 7, 849–873, https://doi.org/10.5194/wes-7-849-2022,https://doi.org/10.5194/wes-7-849-2022, 2022
Short summary
Turbulence statistics from three different nacelle lidars
Wei Fu, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 7, 831–848, https://doi.org/10.5194/wes-7-831-2022,https://doi.org/10.5194/wes-7-831-2022, 2022
Short summary
RANS modeling of a single wind turbine wake in the unstable surface layer
Mads Baungaard, Maarten Paul van der Laan, and Mark Kelly
Wind Energ. Sci., 7, 783–800, https://doi.org/10.5194/wes-7-783-2022,https://doi.org/10.5194/wes-7-783-2022, 2022
Short summary

Cited articles

Annoni, J. and Seiler, P.: A low-order model for wind farm control, P. Amer. Contr. Conf., https://doi.org/10.1109/ACC.2015.7170981, 2015.
Annoni, J., Seiler, P., Johnson, K., Fleming, P. A., and Gebraad, P. M. O.: Evaluating wake models for wind farm control, P. Amer. Contr. Conf., https://doi.org/10.1109/ACC.2014.6858970, 2014.
Avila, M., Folch, A., Houzeaux, G., Eguzkitza, B., Prieto, L., and Cabezøn, D.: A Parallel CFD Model for Wind Farms, Procedia Comput. Sci., 18, 2157–2166, 2013.
Barthelmie, R., Frandsen, S., Hansen, K., Schepers, J., Rados, K., Schlez, W., Neubert, A., Jensen, L., and Neckelmann, S.: Modelling the impact of wakes on power output at Nysted and Horns rev, European Wind Energy Conference, 2009.
Boersma, S., Gebraad, P. M. O., Vali, M., Doekemeijer, B. M., and van Wingerden, J. W.: A control-oriented dynamic wind farm flow model: “WFSim”, J. Phys. Conf. Ser., https://doi.org/10.1088/1742-6596/753/3/032005, 2016a.
Download
Short summary
Controlling the flow within wind farms to reduce the fatigue loads and provide grid facilities such as the delivery of a demanded power is a challenging control problem due to the underlying time-varying non-linear wake dynamics. In this paper, a control-oriented dynamical wind farm model is presented and validated with high-fidelity wind farm models. In contrast to the latter models, the model presented in this work is computationally efficient and hence suitable for online wind farm control.