Articles | Volume 4, issue 1
https://doi.org/10.5194/wes-4-1-2019
https://doi.org/10.5194/wes-4-1-2019
Research article
 | 
08 Jan 2019
Research article |  | 08 Jan 2019

Aerodynamic characterization of a soft kite by in situ flow measurement

Johannes Oehler and Roland Schmehl

Related authors

Power curve modelling and scaling of fixed-wing ground-generation airborne wind energy systems
Rishikesh Joshi, Roland Schmehl, and Michiel Kruijff
Wind Energ. Sci., 9, 2195–2215, https://doi.org/10.5194/wes-9-2195-2024,https://doi.org/10.5194/wes-9-2195-2024, 2024
Short summary
A listening experiment exploring the relationship between noise annoyance and sound quality metrics for airborne energy systems
Helena Schmidt, Renatto M. Yupa-Villanueva, Daniele Ragni, Roberto Merino-Martínez, Piet van Gool, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-125,https://doi.org/10.5194/wes-2024-125, 2024
Preprint under review for WES
Short summary
Measurement of the turning behaviour of tethered membrane wings using automated flight manoeuvres
Christoph Elfert, Dietmar Göhlich, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-87,https://doi.org/10.5194/wes-2024-87, 2024
Revised manuscript accepted for WES
Short summary
Swinging motion of a kite with suspended control unit flying turning manoeuvres
Mark Schelbergen and Roland Schmehl
Wind Energ. Sci., 9, 1323–1344, https://doi.org/10.5194/wes-9-1323-2024,https://doi.org/10.5194/wes-9-1323-2024, 2024
Short summary
Offshore wind farm optimisation: a comparison of performance between regular and irregular wind turbine layouts
Maaike Sickler, Bart Ummels, Michiel Zaaijer, Roland Schmehl, and Katherine Dykes
Wind Energ. Sci., 8, 1225–1233, https://doi.org/10.5194/wes-8-1225-2023,https://doi.org/10.5194/wes-8-1225-2023, 2023
Short summary

Related subject area

Aerodynamics and hydrodynamics
FLOW Estimation and Rose Superposition (FLOWERS): an integral approach to engineering wake models
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022,https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary
High-Reynolds-number investigations on the ability of the full-scale e-TellTale sensor to detect flow separation on a wind turbine blade section
Antoine Soulier, Caroline Braud, Dimitri Voisin, and Frédéric Danbon
Wind Energ. Sci., 7, 1043–1052, https://doi.org/10.5194/wes-7-1043-2022,https://doi.org/10.5194/wes-7-1043-2022, 2022
Short summary
Experimental investigation of mini Gurney flaps in combination with vortex generators for improved wind turbine blade performance
Jörg Alber, Marinos Manolesos, Guido Weinzierl-Dlugosch, Johannes Fischer, Alexander Schönmeier, Christian Navid Nayeri, Christian Oliver Paschereit, Joachim Twele, Jens Fortmann, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci., 7, 943–965, https://doi.org/10.5194/wes-7-943-2022,https://doi.org/10.5194/wes-7-943-2022, 2022
Short summary
Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines
Mohammad Sadman Sakib and D. Todd Griffith
Wind Energ. Sci., 7, 677–696, https://doi.org/10.5194/wes-7-677-2022,https://doi.org/10.5194/wes-7-677-2022, 2022
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022,https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary

Cited articles

Behrel, M., Roncin, K., Leroux, J.-B., Montel, F., Hascoet, R., Neme, A., Jochum, C., and Parlier, Y.: Application of Phase Averaging Method for Measuring Kite Performance: Onshore Results, Journal of Sailing Technology, 1–27, 2018. a, b, c
Borobia, R., Sanchez-Arriaga, G., Serino, A., and Schmehl, R.: Flight Path Reconstruction and Flight Test of Four-line Power Kites, Journal of Guid. Control Dynam., 41, 2604–2614, https://doi.org/10.2514/1.G003581, 2018. a, b
Bosch, A., Schmehl, R., Tiso, P., and Rixen, D.: Nonlinear Aeroelasticity, Flight Dynamics and Control of a Flexible Membrane Traction Kite, in: Airborne Wind Energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R., Green Energy and Technology, chap. 17, 307–323, Springer, Berlin Heidelberg, Germany, https://doi.org/10.1007/978-3-642-39965-7_17, 2013. a, b
Bosch, A., Schmehl, R., Tiso, P., and Rixen, D.: Dynamic nonlinear aeroelastic model of a kite for power generation, Journal of Guid. Control Dynam., 37, 1426–1436, https://doi.org/10.2514/1.G000545, 2014. a
Breukels, J.: An Engineering Methodology for Kite Design, PhD thesis, Delft University of Technology, Delft, the Netherlands, available at: http://resolver.tudelft.nl/uuid:cdece38a-1f13-47cc-b277-ed64fdda7cdf (last access: 2 January 2019), 2011. a, b
Download
Short summary
We present an experimental method for aerodynamic characterization of flexible membrane kites by in situ measurement of the relative flow, while performing complex flight maneuvers. We find that the aerodynamics of this type of wing depend not only on the angle of attack, but also on the level of aerodynamic loading and the aeroelastic deformation. We recommend using the relative power setting of the kite as a secondary influencing parameter.
Altmetrics
Final-revised paper
Preprint