Research article
08 Jan 2019
Research article | 08 Jan 2019
Aerodynamic characterization of a soft kite by in situ flow measurement
Johannes Oehler and Roland Schmehl
Related authors
System identification, fuzzy control and simulation of a kite power system with fixed tether length
Tarek N. Dief, Uwe Fechner, Roland Schmehl, Shigeo Yoshida, Amr M. M. Ismaiel, and Amr M. Halawa
Wind Energ. Sci., 3, 275–291, https://doi.org/10.5194/wes-3-275-2018,https://doi.org/10.5194/wes-3-275-2018, 2018
Related subject area
Aerodynamic effects of Gurney flaps on the rotor blades of a research wind turbine
Jörg Alber, Rodrigo Soto-Valle, Marinos Manolesos, Sirko Bartholomay, Christian Navid Nayeri, Marvin Schönlau, Christian Menzel, Christian Oliver Paschereit, Joachim Twele, and Jens Fortmann
Wind Energ. Sci., 5, 1645–1662, https://doi.org/10.5194/wes-5-1645-2020,https://doi.org/10.5194/wes-5-1645-2020, 2020
Short summary
Cartographing dynamic stall with machine learning
Matthew Lennie, Johannes Steenbuck, Bernd R. Noack, and Christian Oliver Paschereit
Wind Energ. Sci., 5, 819–838, https://doi.org/10.5194/wes-5-819-2020,https://doi.org/10.5194/wes-5-819-2020, 2020
Short summary
Pressure Based Lift Estimation and its Application to Feedforward Load Control employing Trailing Edge Flaps
Sirko Bartholomay, Tom T. B. Wester, Sebastian Perez-Becker, Simon Konze, Christian Menzel, Michael Hölling, Axel Spickenheuer, Joachim Peinke, Christian N. Nayeri, Oliver P. Paschereit, and Kilian Oberleithner
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2020-91,https://doi.org/10.5194/wes-2020-91, 2020
Preprint under review for WES
Short summary
Power curve and wake analyses of the Vestas multi-rotor demonstrator
Maarten Paul van der Laan, Søren Juhl Andersen, Néstor Ramos García, Nikolas Angelou, Georg Raimund Pirrung, Søren Ott, Mikael Sjöholm, Kim Hylling Sørensen, Julio Xavier Vianna Neto, Mark Kelly, Torben Krogh Mikkelsen, and Gunner Christian Larsen
Wind Energ. Sci., 4, 251–271, https://doi.org/10.5194/wes-4-251-2019,https://doi.org/10.5194/wes-4-251-2019, 2019
Short summary
Blind test comparison on the wake behind a yawed wind turbine
Franz Mühle, Jannik Schottler, Jan Bartl, Romain Futrzynski, Steve Evans, Luca Bernini, Paolo Schito, Martín Draper, Andrés Guggeri, Elektra Kleusberg, Dan S. Henningson, Michael Hölling, Joachim Peinke, Muyiwa S. Adaramola, and Lars Sætran
Wind Energ. Sci., 3, 883–903, https://doi.org/10.5194/wes-3-883-2018,https://doi.org/10.5194/wes-3-883-2018, 2018
Numerical analyses and optimizations on the flow in the nacelle region of a wind turbine
Pascal Weihing, Tim Wegmann, Thorsten Lutz, Ewald Krämer, Timo Kühn, and Andree Altmikus
Wind Energ. Sci., 3, 503–531, https://doi.org/10.5194/wes-3-503-2018,https://doi.org/10.5194/wes-3-503-2018, 2018
Short summary
About the suitability of different numerical methods to reproduce model wind turbine measurements in a wind tunnel with a high blockage ratio
Annette Claudia Klein, Sirko Bartholomay, David Marten, Thorsten Lutz, George Pechlivanoglou, Christian Navid Nayeri, Christian Oliver Paschereit, and Ewald Krämer
Wind Energ. Sci., 3, 439–460, https://doi.org/10.5194/wes-3-439-2018,https://doi.org/10.5194/wes-3-439-2018, 2018
Short summary
Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear
Jan Bartl, Franz Mühle, Jannik Schottler, Lars Sætran, Joachim Peinke, Muyiwa Adaramola, and Michael Hölling
Wind Energ. Sci., 3, 329–343, https://doi.org/10.5194/wes-3-329-2018,https://doi.org/10.5194/wes-3-329-2018, 2018
Short summary
How does turbulence change approaching a rotor?
Jakob Mann, Alfredo Peña, Niels Troldborg, and Søren J. Andersen
Wind Energ. Sci., 3, 293–300, https://doi.org/10.5194/wes-3-293-2018,https://doi.org/10.5194/wes-3-293-2018, 2018
Short summary
Wind tunnel experiments on wind turbine wakes in yaw: redefining the wake width
Jannik Schottler, Jan Bartl, Franz Mühle, Lars Sætran, Joachim Peinke, and Michael Hölling
Wind Energ. Sci., 3, 257–273, https://doi.org/10.5194/wes-3-257-2018,https://doi.org/10.5194/wes-3-257-2018, 2018
Short summary
Assessment of wind turbine component loads under yaw-offset conditions
Rick Damiani, Scott Dana, Jennifer Annoni, Paul Fleming, Jason Roadman, Jeroen van Dam, and Katherine Dykes
Wind Energ. Sci., 3, 173–189, https://doi.org/10.5194/wes-3-173-2018,https://doi.org/10.5194/wes-3-173-2018, 2018
Short summary
Free-flow wind speed from a blade-mounted flow sensor
Mads Mølgaard Pedersen, Torben Juul Larsen, Helge Aagaard Madsen, and Søren Juhl Andersen
Wind Energ. Sci., 3, 121–138, https://doi.org/10.5194/wes-3-121-2018,https://doi.org/10.5194/wes-3-121-2018, 2018
Short summary
Cited articles
Behrel, M., Roncin, K., Leroux, J.-B., Montel, F., Hascoet, R., Neme, A.,
Jochum, C., and Parlier, Y.: Application of Phase Averaging Method for
Measuring Kite Performance: Onshore Results, Journal of Sailing Technology,
1–27, 2018.
a,
b,
c
Borobia, R., Sanchez-Arriaga, G., Serino, A., and Schmehl, R.: Flight Path
Reconstruction and Flight Test of Four-line Power Kites, Journal of Guid.
Control Dynam., 41, 2604–2614,
https://doi.org/10.2514/1.G003581, 2018.
a,
b
Bosch, A., Schmehl, R., Tiso, P., and Rixen, D.: Nonlinear Aeroelasticity,
Flight Dynamics and Control of a Flexible Membrane Traction Kite, in:
Airborne Wind Energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R., Green
Energy and Technology, chap. 17, 307–323, Springer, Berlin Heidelberg,
Germany,
https://doi.org/10.1007/978-3-642-39965-7_17, 2013.
a,
b
Bosch, A., Schmehl, R., Tiso, P., and Rixen, D.: Dynamic nonlinear aeroelastic
model of a kite for power generation, Journal of Guid.
Control Dynam., 37, 1426–1436,
https://doi.org/10.2514/1.G000545, 2014.
a
Breukels, J.: An Engineering Methodology for Kite Design, PhD thesis, Delft
University of Technology, Delft, the Netherlands, available at:
http://resolver.tudelft.nl/uuid:cdece38a-1f13-47cc-b277-ed64fdda7cdf (last access: 2 January 2019), 2011.
a,
b
Bungart, M.: Fluid-Struktur Kopplung an einem RAM-Air-Kiteschirm, Master's
thesis, University of Stuttgart, Stuttgart, Germany, 2009. a
Costa, D.: Experimental Investigation of Aerodynamic and Structural Properties
of a Kite, Master's thesis, ETH Zurich, Zurich, Switzerland, 2011.
a,
b
Dadd, G. M., Hudson, D. A., and Shenoi, R. A.: Comparison of two kite force
models with experiment, J. Aircraft, 47, 212–224,
https://doi.org/10.2514/1.44738, 2010.
a,
b
de Wachter, A.: Deformation and Aerodynamic Performance of a Ram-Air Wing,
Master's thesis, Delft University of Technology, Delft, the Netherlands,
available at:
http://resolver.tudelft.nl/uuid:786e3395-4590-4755-829f-51283a8df3d2 (last access: 2 January 2019), 2008.
a,
b,
c
Diehl, M., Leuthold, R., and Schmehl, R.: The International Airborne Wind
Energy Conference 2017: Book of Abstracts, University of Freiburg/Delft
University of Technology, Freiburg, Germany,
https://doi.org/10.6094/UNIFR/12994, 2017.
a
Dunker, S.: Ram-Air Wing Design Considerations for Airborne Wind Energy, in:
Airborne Wind Energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R., Green
Energy and Technology, chap. 31, 517–546, Springer, Berlin Heidelberg,
Germany,
https://doi.org/10.1007/978-3-642-39965-7_31, 2013.
a
Erhard, M. and Strauch, H.: Theory and Experimental Validation of a Simple
Comprehensible Model of Tethered Kite Dynamics Used for Controller Design,
in: Airborne Wind Energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R.,
Green Energy and Technology, chap. 8, 141–165, Springer, Berlin
Heidelberg, Germany,
https://doi.org/10.1007/978-3-642-39965-7_8, 2013.
a
European Commission: Resource Efficient Automatic Conversion of High-Altitude
Wind (REACH), availablet at:
https://cordis.europa.eu/project/rcn/199241_en.html (last access: 1 June 2018), 2015. a
Fechner, U. and Schmehl, R.: Flight path planning in a turbulent wind
environment, in: Airborne Wind Energy, edited by: Schmehl, R., Green Energy
and Technology, chap. 15, 361–390, Springer, Singapore,
https://doi.org/10.1007/978-981-10-1947-0_15, 2018.
a,
b,
c
Fechner, U., van der Vlugt, R., Schreuder, E., and Schmehl, R.: Dynamic Model
of a Pumping Kite Power System, Renew. Energ., 83, 705–716,
https://doi.org/10.1016/j.renene.2015.04.028, 2015.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j
Geiger, R. H. and Wailes, W. K.: Advanced Recovery System Wind Tunnel Test
Report, Tech. Rep. NASA-CR-177563, NASA Ames Research Center,
http://hdl.handle.net/2060/19900018337, 1990. a
Hassig, H. J.: An approximate true damping solution of the flutter equation by
determinant iteration, J. Aircraft, 8, 885–889,
https://doi.org/10.2514/3.44311, 1971.
a
Hobbs, S. E.: Kite performance measurements in natural wind, Aeronautical
J., 94, 59–66, 1990. a
Hummel, J.: Automatisierte Vermessung und Charakterisierung der dynamischen
Eigenschaften seilgebundener, vollflexibler Tragflächen, PhD thesis,
Technical University Berlin, Berlin, Germany,
https://doi.org/10.14279/depositonce-5863, 2017.
a,
b,
c,
d,
e
Hummel, J., Göhlich, D., and Schmehl, R.: Automatic Measurement and
Characterization of the Dynamic Properties of Tethered Membrane Wings, Wind
Energ. Sci. Discuss.,
https://doi.org/10.5194/wes-2018-56, in review, 2018.
a,
b,
c
Jann, T. and Greiner-Perth, C.: A New Type of Airflow Sensor for Gliding
Parachutes, in: Proceedings of the 24th Aerodynamic Decelerator Systems
Conference (at AVIATION 2017), AIAA 2017-3880,
https://doi.org/10.2514/6.2017-3880,
2017.
a
Kitepower B.V.:
http://www.kitepower.nl/, last access: 25 May
2018a. a
Kitepower B.V.: A 40 Square Meter Success,
https://kitepower.nl/a-40-square-meter-success/, last access: 1
June 2018b. a
Oehler, J. and Schmehl, R.: Experimental Characterization of a Force-Controlled
Flexible Wing Traction Kite, in: Book of Abstracts of the International
Airborne Wind Energy Conference 2017, edited by: Diehl, M., Leuthold, R., and
Schmehl, R., 122–123, University of Freiburg & Delft University of
Technology, Freiburg, Germany,
http://resolver.tudelft.nl/uuid:ec74a4f5-22ac-4d40-9b5d-8441b817019a, poster available from:
http://awec2017.com/images/posters/Poster_Oehler.pdf, 2017. a
Oehler, J. and Schmehl, R.: Kite onboard setup for in situ measurement of
relative flow, Video footage of onboard camera,
https://doi.org/10.5446/37575, last access: 13 August 2018.
a
Oehler, J., van Reijen, M., and Schmehl, R.: Experimental investigation of soft
kite performance during turning maneuvers, J. Phys. Conf.
Ser., 1037, 052004,
https://doi.org/10.1088/1742-6596/1037/5/052004, 2018a.
a
Oehler, J., Schmehl, R., Peschel, J., Faggiani, P., and Buchholz, B.: Kite power
flight data acquired on 24 March 2017, Dataset, 4TU.Centre for Research Data,
https://doi.org/10.4121/uuid:37264fde-2344-4af2-860c-effda9caa3e8 (last access: 7 January 2019), 2018b. a
Python, B.: Methodology Improvement for Performance Assessment of Pumping Kite
Power Wing, Master's thesis, École Polytechnique Fédérale de Lausanne,
available at:
http://resolver.tudelft.nl/uuid:462bba8d-e0ca-419d-a3b0-aaa93c284625 (last access: 2 January 2019), 2017. a
Ruiterkamp, R. and Sieberling, S.: Description and Preliminary Test Results of
a Six Degrees of Freedom Rigid Wing Pumping System, in: Airborne Wind Energy,
edited by Ahrens, U., Diehl, M., and Schmehl, R., Green Energy and
Technology, chap. 26, 443–458, Springer, Berlin Heidelberg, Germany,
https://doi.org/10.1007/978-3-642-39965-7_26, 2013.
a
Ruppert, M. B.: Development and Validation of a Real Time Pumping Kite Model,
Master's thesis, Delft University of Technology, Delft, the Netherlands,
available at:
http://resolver.tudelft.nl/uuid:56f1aef6-f337-4224-a44e-8314e9efbe83 (last access: 2 January 2019), 2012.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k
Schmehl, R.: Experimental setup for automatic launching and landing of a
25 m
2 traction kite, available at:
https://www.youtube.com/watch?v=w4oWs_zNpr8 (last access: 1 May 2018),
2014. a
Schmehl, R. and Oehler, J.: 25 m
2 LEI V3 tube kite transitioning to
traction
phase, flying figure eight manoeuvres, Video footage of onboard camera,
https://doi.org/10.5446/37583, last access: 13 August 2018.
a
Schmehl, R., Noom, M., and van der Vlugt, R.: Traction Power Generation with
Tethered Wings, in: Airborne Wind Energy, edited by: Ahrens, U., Diehl, M.,
and Schmehl, R., Green Energy and Technology, chap. 2, 23–45, Springer,
Berlin Heidelberg, Germany,
https://doi.org/10.1007/978-3-642-39965-7_2, 2013.
a,
b,
c
Schmehl, R., van der Vlugt, R., Fechner, U., de Wachter, A., and Ockels, W.:
Airborne Wind Energy System, Dutch Patent Application NL2009528 (C), 2014. a
Schmidt, E., De Lellis, M., Saraiva, R., and Trofino, A.: State estimation of
a tethered airfoil for monitoring, control and optimization, in: Proceedings
of the 20th IFAC World Congress, Toulouse, France, 50,
13246–13251,
https://doi.org/10.1016/j.ifacol.2017.08.1960, 2017.
a
Skysails Power: available at:
http://www.skysails.info/power/, last
access: 25 May 2018. a
Spera, D. A.: Models of Lift and Drag Coefficients of Stalled and Unstalled
Airfoils in Wind Turbines and Wind Tunnels, Tech. Rep. NASA/CR-2008-215434,
NASA Glenn Research Center, Cleveland, OH, USA, 2008. a
Stevenson, J.: Traction Kite Testing and Aerodynamics, PhD thesis, University
of Canterbury, New Zealand, available at:
http://hdl.handle.net/10092/7688 (last access: 2 January 2019), 2003.
a,
b,
c
Stevenson, J., Alexander, K., and Lynn, P.: Kite performance testing by flying
in a circle, Aeronautical J., 109, 269–276,
https://doi.org/10.1017/S0001924000000725, 2005.
a,
b
van der Vlugt, R.: Aero- and Hydrodynamic Performance Analysis of a Speed
Kiteboarder, Master's thesis, Delft University of Technology, Delft, the
Netherlands, available at:
http://resolver.tudelft.nl/uuid:9e0c7a62-149c-4fab-8d27-afe15c1a8795 (last access: 2 January 2019), 2009.
a,
b
van der Vlugt, R., Peschel, J., and Schmehl, R.: Design and Experimental
Characterization of a Pumping Kite Power System, in: Airborne Wind Energy,
edited by: Ahrens, U., Diehl, M., and Schmehl, R., Green Energy and
Technology, chap. 23, 403–425, Springer, Berlin Heidelberg, Germany,
https://doi.org/10.1007/978-3-642-39965-7_23, 2013.
a,
b,
c,
d
van der Vlugt, R., Bley, A., Schmehl, R., and Noom, M.: Quasi-Steady Model of a
Pumping Kite Power System, Renew. Energ., 131, 83–99,
https://doi.org/10.1016/j.renene.2018.07.023, 2019.
a,
b,
c,
d,
e,
f
van Reijen, M.: The turning of kites, Master's thesis, Delft University of
Technology, Delft, the Netherlands, available at:
http://resolver.tudelft.nl/uuid:5836c754-68d3-477a-be32-8e1878f85eac (last access: 2 January 2019), 2018.
a,
b,
c,
d
Weston, D.: EnBW joins kite-wind project, Windpower Monthly, 21 June 2018,
available at:
https://www.windpowermonthly.com/article/1485686/enbw-joins-kite-wind-project, last access: 22 June 2018. a
Willemsen, E., Rozendal, D., Hollestelle, P., and Elbertsen, G. A.: The
FASTWing Project: Wind Tunnel Tests, Realization and Results, in: Proceedings
of the 18th AIAA Aerodynamic Decelerator Systems Technology Conference and
Seminar, AIAA 2005-1641,
https://doi.org/10.2514/6.2005-1641, 2005.
a