Articles | Volume 4, issue 1
https://doi.org/10.5194/wes-4-115-2019
https://doi.org/10.5194/wes-4-115-2019
Research article
 | 
31 Jan 2019
Research article |  | 31 Jan 2019

Comparison between upwind and downwind designs of a 10 MW wind turbine rotor

Pietro Bortolotti, Abhinav Kapila, and Carlo L. Bottasso

Related authors

One-to-one aeroservoelastic validation of operational loads and performance of a 2.8 MW wind turbine model in OpenFAST
Kenneth Brown, Pietro Bortolotti, Emmanuel Branlard, Mayank Chetan, Scott Dana, Nathaniel deVelder, Paula Doubrawa, Nicholas Hamilton, Chris Ivanov, Jason Jonkman, Christopher Kelley, and Daniel Zalkind
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-166,https://doi.org/10.5194/wes-2023-166, 2024
Preprint under review for WES
Short summary
Effectively using multifidelity optimization for wind turbine design
John Jasa, Pietro Bortolotti, Daniel Zalkind, and Garrett Barter
Wind Energ. Sci., 7, 991–1006, https://doi.org/10.5194/wes-7-991-2022,https://doi.org/10.5194/wes-7-991-2022, 2022
Short summary
Land-based wind turbines with flexible rail-transportable blades – Part 2: 3D finite element design optimization of the rotor blades
Ernesto Camarena, Evan Anderson, Josh Paquette, Pietro Bortolotti, Roland Feil, and Nick Johnson
Wind Energ. Sci., 7, 19–35, https://doi.org/10.5194/wes-7-19-2022,https://doi.org/10.5194/wes-7-19-2022, 2022
Short summary
Land-based wind turbines with flexible rail-transportable blades – Part 1: Conceptual design and aeroservoelastic performance
Pietro Bortolotti, Nick Johnson, Nikhar J. Abbas, Evan Anderson, Ernesto Camarena, and Joshua Paquette
Wind Energ. Sci., 6, 1277–1290, https://doi.org/10.5194/wes-6-1277-2021,https://doi.org/10.5194/wes-6-1277-2021, 2021
Short summary
On the scaling of wind turbine rotors
Helena Canet, Pietro Bortolotti, and Carlo L. Bottasso
Wind Energ. Sci., 6, 601–626, https://doi.org/10.5194/wes-6-601-2021,https://doi.org/10.5194/wes-6-601-2021, 2021
Short summary

Related subject area

Design methods, reliability and uncertainty modelling
Effectively using multifidelity optimization for wind turbine design
John Jasa, Pietro Bortolotti, Daniel Zalkind, and Garrett Barter
Wind Energ. Sci., 7, 991–1006, https://doi.org/10.5194/wes-7-991-2022,https://doi.org/10.5194/wes-7-991-2022, 2022
Short summary
Efficient Bayesian calibration of aerodynamic wind turbine models using surrogate modeling
Benjamin Sanderse, Vinit V. Dighe, Koen Boorsma, and Gerard Schepers
Wind Energ. Sci., 7, 759–781, https://doi.org/10.5194/wes-7-759-2022,https://doi.org/10.5194/wes-7-759-2022, 2022
Short summary
Fast yaw optimization for wind plant wake steering using Boolean yaw angles
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci., 7, 741–757, https://doi.org/10.5194/wes-7-741-2022,https://doi.org/10.5194/wes-7-741-2022, 2022
Short summary
A simplified, efficient approach to hybrid wind and solar plant site optimization
Charles Tripp, Darice Guittet, Jennifer King, and Aaron Barker
Wind Energ. Sci., 7, 697–713, https://doi.org/10.5194/wes-7-697-2022,https://doi.org/10.5194/wes-7-697-2022, 2022
Short summary
Influence of wind turbine design parameters on linearized physics-based models in OpenFAST
Jason M. Jonkman, Emmanuel S. P. Branlard, and John P. Jasa
Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022,https://doi.org/10.5194/wes-7-559-2022, 2022
Short summary

Cited articles

Badyda, K. and Dylik, M.: Analysis of the impact of wind on electricity prices based on selected european countries, Energy Proced., 105, 55–61, https://doi.org/10.1016/j.egypro.2017.03.279, 2017. a
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Andersen, P. B., Natarajan, A., and Hansen, M. H.: Description of the DTU 10 MW reference wind turbine, DTU Wind Energy Report-I-0092, July, 2013. a
Bauchau, O. A.: Flexible Multibody Dynamics, Mechanics and Its Applications, Springer, ISBN:978-94-007-0335-3, 2011. a
Bortolotti, P., Bottasso, C. L., and Croce, A.: Combined preliminary–detailed design of wind turbines, Wind Energ. Sci., 1, 71–88, https://doi.org/10.5194/wes-1-71-2016, 2016. a, b, c, d, e
Bortolotti, P., Sartori, L., Croce, A., and Bottasso, C. L.: Integration of multiple passive load mitigation technologies by automated design optimization – The case study of a medium-size onshore wind turbine, Wind Energy, 22, 65–79, https://doi.org/10.1002/we.2270, 2018. a, b, c, d
Download
Short summary
The paper compares upwind and downwind three-bladed configurations for a 10 MW wind turbine in terms of power and loads. For the downwind case, the study also considers a load-aligned solution with active coning. Results indicate that downwind solutions are slightly more advantageous than upwind ones, although improvements are small. Additionally, pre-alignment is difficult to achieve in practice, and the active coning solution is associated with very significant engineering challenges.
Altmetrics
Final-revised paper
Preprint