Articles | Volume 5, issue 1
Wind Energ. Sci., 5, 427–437, 2020
https://doi.org/10.5194/wes-5-427-2020
Wind Energ. Sci., 5, 427–437, 2020
https://doi.org/10.5194/wes-5-427-2020
Research article
31 Mar 2020
Research article | 31 Mar 2020

Analytical model for the power–yaw sensitivity of wind turbines operating in full wake

Jaime Liew et al.

Related authors

FarmConners wind farm flow control benchmark – Part 1: Blind test results
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825, https://doi.org/10.5194/wes-7-1791-2022,https://doi.org/10.5194/wes-7-1791-2022, 2022
Short summary
Model-free estimation of available power using deep learning
Tuhfe Göçmen, Albert Meseguer Urbán, Jaime Liew, and Alan Wai Hou Lio
Wind Energ. Sci., 6, 111–129, https://doi.org/10.5194/wes-6-111-2021,https://doi.org/10.5194/wes-6-111-2021, 2021
Short summary

Related subject area

Design methods, reliability and uncertainty modelling
Effectively using multifidelity optimization for wind turbine design
John Jasa, Pietro Bortolotti, Daniel Zalkind, and Garrett Barter
Wind Energ. Sci., 7, 991–1006, https://doi.org/10.5194/wes-7-991-2022,https://doi.org/10.5194/wes-7-991-2022, 2022
Short summary
Efficient Bayesian calibration of aerodynamic wind turbine models using surrogate modeling
Benjamin Sanderse, Vinit V. Dighe, Koen Boorsma, and Gerard Schepers
Wind Energ. Sci., 7, 759–781, https://doi.org/10.5194/wes-7-759-2022,https://doi.org/10.5194/wes-7-759-2022, 2022
Short summary
Fast yaw optimization for wind plant wake steering using Boolean yaw angles
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci., 7, 741–757, https://doi.org/10.5194/wes-7-741-2022,https://doi.org/10.5194/wes-7-741-2022, 2022
Short summary
A simplified, efficient approach to hybrid wind and solar plant site optimization
Charles Tripp, Darice Guittet, Jennifer King, and Aaron Barker
Wind Energ. Sci., 7, 697–713, https://doi.org/10.5194/wes-7-697-2022,https://doi.org/10.5194/wes-7-697-2022, 2022
Short summary
Influence of wind turbine design parameters on linearized physics-based models in OpenFAST
Jason M. Jonkman, Emmanuel S. P. Branlard, and John P. Jasa
Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022,https://doi.org/10.5194/wes-7-559-2022, 2022
Short summary

Cited articles

Aagaard Madsen, H., Sørensen, N., and Schreck, S.: Yaw aerodynamics analyzed with three codes in comparison with experiment, in: AIAA Paper 2003-519, American Institute of Aeronautics and Astronautics, Reno, Nevada, USA, 2003. a
Andersen, S. J.: LES of wake flow behind 2.3 MW wind turbine, DTU Data, https://doi.org/10.11583/DTU.12005421.v1, 2020. a
Annoni, J., Bay, C., Johnson, K., Dall'Anese, E., Quon, E., Kemper, T., and Fleming, P.: Wind direction estimation using SCADA data with consensus-based optimization, Wind Energ. Sci., 4, 355–368, https://doi.org/10.5194/wes-4-355-2019, 2019. a
Archer, C. L. and Vasel-Be-Hagh, A.: Wake steering via yaw control in multi-turbine wind farms: Recommendations based on large-eddy simulation, Sustain. Energ. Technol. Assess., 33, 34–43, https://doi.org/10.1016/j.seta.2019.03.002, 2019. a
Bartl, J., Mühle, F., and Sætran, L.: Wind tunnel study on power output and yaw moments for two yaw-controlled model wind turbines, Wind Energ. Sci., 3, 489–502, https://doi.org/10.5194/wes-3-489-2018, 2018. a
Download
Short summary
In wind farms, the interaction between neighboring turbines can cause notable power losses. The focus of the paper is on how the combination of turbine yaw misalignment and wake effects influences the power loss in a wind turbine. The results of the paper show a more notable power loss due to turbine misalignment when turbines are closely spaced. The presented conclusions enable better predictions of a turbine's power production, which can assist the wind farm design process.