Articles | Volume 6, issue 4
Wind Energ. Sci., 6, 1031–1041, 2021
https://doi.org/10.5194/wes-6-1031-2021
Wind Energ. Sci., 6, 1031–1041, 2021
https://doi.org/10.5194/wes-6-1031-2021

Research article 29 Jul 2021

Research article | 29 Jul 2021

Maximal power per device area of a ducted turbine

Nojan Bagheri-Sadeghi et al.

Related authors

Ducted wind turbine optimization and sensitivity to rotor position
Nojan Bagheri-Sadeghi, Brian T. Helenbrook, and Kenneth D. Visser
Wind Energ. Sci., 3, 221–229, https://doi.org/10.5194/wes-3-221-2018,https://doi.org/10.5194/wes-3-221-2018, 2018
Short summary

Related subject area

Aerodynamics and hydrodynamics
Some effects of flow expansion on the aerodynamics of horizontal-axis wind turbines
David H. Wood and Eric J. Limacher
Wind Energ. Sci., 6, 1413–1425, https://doi.org/10.5194/wes-6-1413-2021,https://doi.org/10.5194/wes-6-1413-2021, 2021
Short summary
Experimental analysis of radially resolved dynamic inflow effects due to pitch steps
Frederik Berger, David Onnen, Gerard Schepers, and Martin Kühn
Wind Energ. Sci., 6, 1341–1361, https://doi.org/10.5194/wes-6-1341-2021,https://doi.org/10.5194/wes-6-1341-2021, 2021
Short summary
Wind tunnel testing of a swept tip shape and comparison with multi-fidelity aerodynamic simulations
Thanasis Barlas, Georg Raimund Pirrung, Néstor Ramos-García, Sergio González Horcas, Robert Flemming Mikkelsen, Anders Smærup Olsen, and Mac Gaunaa
Wind Energ. Sci., 6, 1311–1324, https://doi.org/10.5194/wes-6-1311-2021,https://doi.org/10.5194/wes-6-1311-2021, 2021
Short summary
Ducted wind turbines in yawed flow: a numerical study
Vinit Dighe, Dhruv Suri, Francesco Avallone, and Gerard van Bussel
Wind Energ. Sci., 6, 1263–1275, https://doi.org/10.5194/wes-6-1263-2021,https://doi.org/10.5194/wes-6-1263-2021, 2021
Short summary
A computationally efficient engineering aerodynamic model for non-planar wind turbine rotors
Ang Li, Mac Gaunaa, Georg Raimund Pirrung, and Sergio González Horcas
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-100,https://doi.org/10.5194/wes-2021-100, 2021
Revised manuscript accepted for WES
Short summary

Cited articles

Agha, A. and Chaudhry, H. N.: State-of-the-art in development of diffuser augmented wind turbines (DAWT) for sustainable buildings, MATEC Web Conf., 120, 08008, https://doi.org/10.1051/matecconf/201712008008, 2017. a
Aranake, A. and Duraisamy, K.: Aerodynamic optimization of shrouded wind turbines, Wind Energy, 20, 877–889, https://doi.org/10.1002/we.2068, 2017. a, b, c, d, e, f, g
Bagheri-Sadeghi, N., Helenbrook, B. T., and Visser, K. D.: Ducted wind turbine optimization and sensitivity to rotor position, Wind Energ. Sci., 3, 221–229, https://doi.org/10.5194/wes-3-221-2018, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w
Bagheri-Sadeghi, N., Helenbrook, B. T., and Visser, K. D.: Wake comparison of open and ducted wind turbines using actuator disc simulations, in: Proceedings of the ASME 2020 Fluids Engineering Division Summer Meeting, 13–15 July 2020, Online, 3, V003T05A050, https://doi.org/10.1115/FEDSM2020-20300, 2020. a
Bontempo, R. and Manna, M.: Diffuser augmented wind turbines: Review and assessment of theoretical models, Appl. Energy, 280, 115867, https://doi.org/10.1016/j.apenergy.2020.115867, 2020. a, b
Download
Short summary
The design of a ducted wind turbine was optimized to maximize the power per total cross-sectional area of the device. The associated power coefficient was 0.70, which is significantly greater than that obtainable from an open rotor turbine. Furthermore, it was shown that there is an optimal duct length, which is 15 % of the rotor diameter.