Articles | Volume 6, issue 3
Wind Energ. Sci., 6, 841–866, 2021
https://doi.org/10.5194/wes-6-841-2021
Wind Energ. Sci., 6, 841–866, 2021
https://doi.org/10.5194/wes-6-841-2021
Research article
07 Jun 2021
Research article | 07 Jun 2021

Wind turbine load validation in wakes using wind field reconstruction techniques and nacelle lidar wind retrievals

Davide Conti et al.

Related authors

Probabilistic estimation of the Dynamic Wake Meandering model parameters using SpinnerLidar-derived wake characteristics
Davide Conti, Nikolay Dimitrov, Alfredo Peña, and Thomas Herges
Wind Energ. Sci., 6, 1117–1142, https://doi.org/10.5194/wes-6-1117-2021,https://doi.org/10.5194/wes-6-1117-2021, 2021
Short summary
Aeroelastic load validation in wake conditions using nacelle-mounted lidar measurements
Davide Conti, Nikolay Dimitrov, and Alfredo Peña
Wind Energ. Sci., 5, 1129–1154, https://doi.org/10.5194/wes-5-1129-2020,https://doi.org/10.5194/wes-5-1129-2020, 2020
Short summary
The fence experiment – full-scale lidar-based shelter observations
Alfredo Peña, Andreas Bechmann, Davide Conti, and Nikolas Angelou
Wind Energ. Sci., 1, 101–114, https://doi.org/10.5194/wes-1-101-2016,https://doi.org/10.5194/wes-1-101-2016, 2016
Short summary

Related subject area

Wind and turbulence
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary
Development of an automatic thresholding method for wake meandering studies and its application to the data set from scanning wind lidar
Maria Krutova, Mostafa Bakhoday-Paskyabi, Joachim Reuder, and Finn Gunnar Nielsen
Wind Energ. Sci., 7, 849–873, https://doi.org/10.5194/wes-7-849-2022,https://doi.org/10.5194/wes-7-849-2022, 2022
Short summary
Turbulence statistics from three different nacelle lidars
Wei Fu, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 7, 831–848, https://doi.org/10.5194/wes-7-831-2022,https://doi.org/10.5194/wes-7-831-2022, 2022
Short summary
RANS modeling of a single wind turbine wake in the unstable surface layer
Mads Baungaard, Maarten Paul van der Laan, and Mark Kelly
Wind Energ. Sci., 7, 783–800, https://doi.org/10.5194/wes-7-783-2022,https://doi.org/10.5194/wes-7-783-2022, 2022
Short summary
Wake properties and power output of very large wind farms for different meteorological conditions and turbine spacings: a large-eddy simulation case study for the German Bight
Oliver Maas and Siegfried Raasch
Wind Energ. Sci., 7, 715–739, https://doi.org/10.5194/wes-7-715-2022,https://doi.org/10.5194/wes-7-715-2022, 2022
Short summary

Cited articles

IEC: International Standard IEC61400-13: Wind turbines – Part 13: Measurement of mechanical loads, Standard, IEC, 2015. a, b, c
IEC: International Standard IEC61400-1: wind turbines – Part 1: design guidelines, Fourth; 2019, Standard, IEC, 2019. a, b, c, d, e
Achen, C. H.: Interpreting and Using Regression, Sage Publications, Beverly Hills, https://doi.org/10.4135/9781412984560, 1982. a
Ainslie, J.: Calculating the flow field in the wake of wind turbines, J. Wind Eng. Ind. Aerod., 27, 213–224, https://doi.org/10.1016/0167-6105(88)90037-2, 1988. a
Ainslie, J. F.: Wake modelling and the prediction of turbulence properties, in: Proceedings of the Bwea Wind Energy Conference, british Wind Energy Association, 20–24 October 1986, Cambridge, 115–120, 1986. a
Download
Short summary
We define two lidar-based procedures for improving the accuracy of wind turbine load assessment under wake conditions. The first approach incorporates lidar observations directly into turbulence fields serving as inputs for aeroelastic simulations; the second approach imposes lidar-fitted wake deficit time series on the turbulence fields. The uncertainty in the lidar-based power and load predictions is quantified for a variety of scanning configurations and atmosphere turbulence conditions.