Articles | Volume 2, issue 2
https://doi.org/10.5194/wes-2-477-2017
https://doi.org/10.5194/wes-2-477-2017
Research article
 | 
18 Oct 2017
Research article |  | 18 Oct 2017

An analysis of offshore wind farm SCADA measurements to identify key parameters influencing the magnitude of wake effects

Niko Mittelmeier, Julian Allin, Tomas Blodau, Davide Trabucchi, Gerald Steinfeld, Andreas Rott, and Martin Kühn

Related authors

Determination of optimal wind turbine alignment into the wind and detection of alignment changes with SCADA data
Niko Mittelmeier and Martin Kühn
Wind Energ. Sci., 3, 395–408, https://doi.org/10.5194/wes-3-395-2018,https://doi.org/10.5194/wes-3-395-2018, 2018
Short summary
Monitoring offshore wind farm power performance with SCADA data and an advanced wake model
Niko Mittelmeier, Tomas Blodau, and Martin Kühn
Wind Energ. Sci., 2, 175–187, https://doi.org/10.5194/wes-2-175-2017,https://doi.org/10.5194/wes-2-175-2017, 2017
Short summary

Related subject area

Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022,https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022,https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Large-eddy simulation of airborne wind energy farms
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022,https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022,https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary

Cited articles

Archer, C. L., Colle, B. A., Veron, D. L., Veron, F. and Sienkiewicz, M. J.: On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the U.S. northeastern coast, J. Geophys. Res.-Atmos., 121, 8869–8885, https://doi.org/10.1002/2016JD024896, 2016.
Beck, H., Trabucchi, D., Bitter, M., and Kühn, M.: The Ainslie Wake Model An Update for Multi Megawatt Turbines based on State-of-the-Art Wake Scanning Techniques, in Proceedings of the European Wind Energy Association, Barcelona, Spain, 10–13 March, 2014.
Dörenkämper, M.: An investigation of the atmospheric influence on spatial and temporal power fluctuations in offshore wind farms, PhD Thesis, University of Oldenburg, Oldenburg, 2015.
Dörenkämper, M., Tambke, J., Steinfeld, G., Heinemann, D., and Kühn, M.: Influence of marine boundary layer characteristics on power curves of multi megawatt offshore wind turbines, Proceedings of 11th German Wind Energy Conference, Bremen, Germany, 7–8 November, 2012.
Dörenkämper, M., Tambke, J., Steinfeld, G., Heinemann, D., and Kühn, M.: Atmospheric Impacts on Power Curves of Multi-Megawatt Offshore Wind Turbines, J. Phys. Conf. Ser., 555, 12029, https://doi.org/10.1088/1742-6596/555/1/012029, 2014.
Download
Short summary
Stability classification is usually based on measurements from met masts, buoys or lidars. The objective of this paper is to find a classification for stability based on wind turbine supervisory control and data acquisition measurements in order to fit engineering wake models better to the current ambient conditions. The proposed signal is very sensitive to increased turbulence. It allows us to distinguish between conditions with different magnitudes of wake effects.
Altmetrics
Final-revised paper
Preprint