Articles | Volume 4, issue 3
https://doi.org/10.5194/wes-4-527-2019
https://doi.org/10.5194/wes-4-527-2019
Research article
 | 
23 Sep 2019
Research article |  | 23 Sep 2019

Performance study of the QuLAF pre-design model for a 10 MW floating wind turbine

Freddy J. Madsen, Antonio Pegalajar-Jurado, and Henrik Bredmose

Related authors

Grand challenges in the design, manufacture, and operation of future wind turbine systems
Paul Veers, Carlo L. Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Thanasis Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023,https://doi.org/10.5194/wes-8-1071-2023, 2023
Short summary
Response of the International Energy Agency (IEA) Wind 15 MW WindCrete and Activefloat floating wind turbines to wind and second-order waves
Mohammad Youssef Mahfouz, Climent Molins, Pau Trubat, Sergio Hernández, Fernando Vigara, Antonio Pegalajar-Jurado, Henrik Bredmose, and Mohammad Salari
Wind Energ. Sci., 6, 867–883, https://doi.org/10.5194/wes-6-867-2021,https://doi.org/10.5194/wes-6-867-2021, 2021
Short summary
An efficient frequency-domain model for quick load analysis of floating offshore wind turbines
Antonio Pegalajar-Jurado, Michael Borg, and Henrik Bredmose
Wind Energ. Sci., 3, 693–712, https://doi.org/10.5194/wes-3-693-2018,https://doi.org/10.5194/wes-3-693-2018, 2018
Short summary
A model for quick load analysis for monopile-type offshore wind turbine substructures
Signe Schløer, Laura Garcia Castillo, Morten Fejerskov, Emanuel Stroescu, and Henrik Bredmose
Wind Energ. Sci., 3, 57–73, https://doi.org/10.5194/wes-3-57-2018,https://doi.org/10.5194/wes-3-57-2018, 2018
Short summary

Related subject area

Aerodynamics and hydrodynamics
FLOW Estimation and Rose Superposition (FLOWERS): an integral approach to engineering wake models
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022,https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary
High-Reynolds-number investigations on the ability of the full-scale e-TellTale sensor to detect flow separation on a wind turbine blade section
Antoine Soulier, Caroline Braud, Dimitri Voisin, and Frédéric Danbon
Wind Energ. Sci., 7, 1043–1052, https://doi.org/10.5194/wes-7-1043-2022,https://doi.org/10.5194/wes-7-1043-2022, 2022
Short summary
Experimental investigation of mini Gurney flaps in combination with vortex generators for improved wind turbine blade performance
Jörg Alber, Marinos Manolesos, Guido Weinzierl-Dlugosch, Johannes Fischer, Alexander Schönmeier, Christian Navid Nayeri, Christian Oliver Paschereit, Joachim Twele, Jens Fortmann, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci., 7, 943–965, https://doi.org/10.5194/wes-7-943-2022,https://doi.org/10.5194/wes-7-943-2022, 2022
Short summary
Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines
Mohammad Sadman Sakib and D. Todd Griffith
Wind Energ. Sci., 7, 677–696, https://doi.org/10.5194/wes-7-677-2022,https://doi.org/10.5194/wes-7-677-2022, 2022
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022,https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary

Cited articles

Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L., Natarajan, A., and Hansen, M.: Description of the DTU 10 MW reference wind turbine, Tech. rep., No. I-0092, DTU Wind Energy, 2013. a
Hansen, M. and Henriksen, L.: Basic DTU Wind Energy controller, Tech. rep., No. E-0028, DTU Wind Energy, 2013. a
Hansen, M., Hansen, A., Larsen, T., Øye, S., Sørensen, P., and Fuglsang, P.: Control design for a pitch-regulated, variable-speed wind turbine, Tech. rep., No. Risø-R-1500(EN), Risø National Laboratory, 2005. a
IEC: 61400-3: Wind turbines – Part 3: Design Requirements for Offshore Wind Turbines, International Electrotechnical Commision, available at: https://webstore.iec.ch/publication/5446 (last access: 29 April 2019), 2009. a
Jonkman, J. and Jonkman, B.: NWTC Information Portal (FAST v8), available at: https://nwtc.nrel.gov/FAST8 (last access: 29 April 2019), 2016. a
Download
Short summary
This paper presents a comparison study of the simplified model QuLAF (Quick Load Analysis of Floating wind turbines) and FAST for the planar version of various design load cases, in order to investigate how accurate results can be obtained from this simplified model. The overall analysis shows that QuLAF is generally very good at estimating the bending moment at the tower base and the floater motions, whereas the nacelle acceleration is generally underpredicted.
Altmetrics
Final-revised paper
Preprint