Articles | Volume 5, issue 4
https://doi.org/10.5194/wes-5-1689-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-5-1689-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global trends in the performance of large wind farms based on high-fidelity simulations
DTU Wind Energy, Technical University of Denmark, 2800 Lyngby, Denmark
Simon-Philippe Breton
Department of Earth Sciences, Uppsala University, Campus Gotland, Cramérgatan 3, 62 157 Visby, Sweden
Environment and Climate Change Canada, 2121 Route Transcanadienne, Dorval, Quebec, H9P 1J3, Canada
Björn Witha
energy & meteo systems GmbH, Oskar-Homt-Str. 1, 26131 Oldenburg, Germany
now at: ForWind – Center for Wind Energy Research, Carl von Ossietzky University of Oldenburg, Küpkersweg 70, 26129 Oldenburg, Germany
Stefan Ivanell
Department of Earth Sciences, Uppsala University, Campus Gotland, Cramérgatan 3, 62 157 Visby, Sweden
Jens Nørkær Sørensen
DTU Wind Energy, Technical University of Denmark, 2800 Lyngby, Denmark
Related authors
Esperanza Soto Sagredo, Søren Juhl Andersen, Ásta Hannesdóttir, and Jennifer Marie Rinker
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-148, https://doi.org/10.5194/wes-2025-148, 2025
Preprint under review for WES
Short summary
Short summary
We developed and tested three methods to estimate wind speed variations across the entire rotor area of a wind turbine using lidar data. Unlike traditional approaches that focus on average wind speed, our methods capture detailed inflow structures. This allows the turbine to anticipate changes, improving control and reducing wear – provided the estimation settings are properly selected.
Stefan Ivanell, Warit Chanprasert, Luca Lanzilao, James Bleeg, Johan Meyers, Antoine Mathieu, Søren Juhl Andersen, Rem-Sophia Mouradi, Eric Dupont, Hugo Olivares-Espinosa, and Niels Troldborg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-88, https://doi.org/10.5194/wes-2025-88, 2025
Preprint under review for WES
Short summary
Short summary
This study explores how the height of the atmosphere's boundary layer impacts wind farm performance, focusing on how this factor influences energy output. By simulating different boundary layer heights and conditions, the research reveals that deeper layers promote better energy recovery. The findings highlight the importance of considering atmospheric conditions when simulating wind farms to maximize energy efficiency, offering valuable insights for the wind energy industry.
Juan Felipe Céspedes Moreno, Juan Pablo Murcia León, and Søren Juhl Andersen
Wind Energ. Sci., 10, 597–611, https://doi.org/10.5194/wes-10-597-2025, https://doi.org/10.5194/wes-10-597-2025, 2025
Short summary
Short summary
Using a global base in a proper orthogonal decomposition provides a common base for analyzing flows, such as wind turbine wakes, across an entire parameter space. This can be used to compare flows with different conditions using the same physical interpretation. This work shows the convergence of the global base, its small error compared to the truncation error in the flow reconstruction, and the insensitivity to which datasets are included for generating the global base.
Søren Juhl Andersen and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 2117–2133, https://doi.org/10.5194/wes-7-2117-2022, https://doi.org/10.5194/wes-7-2117-2022, 2022
Short summary
Short summary
Simulating the turbulent flow inside large wind farms is inherently complex and computationally expensive. A new and fast model is developed based on data from high-fidelity simulations. The model captures the flow dynamics with correct statistics for a wide range of flow conditions. The model framework provides physical insights and presents a generalization of high-fidelity simulation results beyond the case-specific scenarios, which has significant potential for future turbulence modeling.
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825, https://doi.org/10.5194/wes-7-1791-2022, https://doi.org/10.5194/wes-7-1791-2022, 2022
Short summary
Short summary
The FarmConners benchmark is the first of its kind to bring a wide variety of data sets, control settings, and model complexities for the (initial) assessment of wind farm flow control benefits. Here we present the first part of the benchmark results for three blind tests with large-scale rotors and 11 participating models in total, via direct power comparisons at the turbines as well as the observed or estimated power gain at the wind farm level under wake steering control strategy.
Niels Troldborg, Søren J. Andersen, Emily L. Hodgson, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 1527–1532, https://doi.org/10.5194/wes-7-1527-2022, https://doi.org/10.5194/wes-7-1527-2022, 2022
Short summary
Short summary
This article shows that the power performance of a wind turbine may be very different in flat and complex terrain. This is an important finding because it shows that the power output of a given wind turbine is governed by not only the available wind at the position of the turbine but also how the ambient flow develops in the region behind the turbine.
Mark Kelly, Søren Juhl Andersen, and Ásta Hannesdóttir
Wind Energ. Sci., 6, 1227–1245, https://doi.org/10.5194/wes-6-1227-2021, https://doi.org/10.5194/wes-6-1227-2021, 2021
Short summary
Short summary
Via 11 years of measurements, we made a representative ensemble of wind ramps in terms of acceleration, mean speed, and shear. Constrained turbulence and large-eddy simulations were coupled to an aeroelastic model for each ensemble member. Ramp acceleration was found to dominate the maxima of thrust-associated loads, with a ramp-induced increase of 45 %–50 % plus ~ 3 % per 0.1 m/s2 of bulk ramp acceleration magnitude. The LES indicates that the ramps (and such loads) persist through the farm.
Øyvind Waage Hanssen-Bauer, Paula Doubrawa, Helge Aa. Madsen, Henrik Asmuth, Jason Jonkman, Gunner C. Larsen, Stefan Ivanell, and Roy Stenbro
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-163, https://doi.org/10.5194/wes-2025-163, 2025
Preprint under review for WES
Short summary
Short summary
We studied how different industry-oriented computer models predict the behavior of winds behind turbines in a wind farm. These "wakes" reduce energy output and can affect turbines further down the row. By comparing these three models with more detailed simulations, we found they agree well on overall power but differ in how they capture turbulence and wear on machines. Our results show where the models need improvement to make wind farm computer models more accurate and reliable in the future.
Esperanza Soto Sagredo, Søren Juhl Andersen, Ásta Hannesdóttir, and Jennifer Marie Rinker
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-148, https://doi.org/10.5194/wes-2025-148, 2025
Preprint under review for WES
Short summary
Short summary
We developed and tested three methods to estimate wind speed variations across the entire rotor area of a wind turbine using lidar data. Unlike traditional approaches that focus on average wind speed, our methods capture detailed inflow structures. This allows the turbine to anticipate changes, improving control and reducing wear – provided the estimation settings are properly selected.
Stefan Ivanell, Warit Chanprasert, Luca Lanzilao, James Bleeg, Johan Meyers, Antoine Mathieu, Søren Juhl Andersen, Rem-Sophia Mouradi, Eric Dupont, Hugo Olivares-Espinosa, and Niels Troldborg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-88, https://doi.org/10.5194/wes-2025-88, 2025
Preprint under review for WES
Short summary
Short summary
This study explores how the height of the atmosphere's boundary layer impacts wind farm performance, focusing on how this factor influences energy output. By simulating different boundary layer heights and conditions, the research reveals that deeper layers promote better energy recovery. The findings highlight the importance of considering atmospheric conditions when simulating wind farms to maximize energy efficiency, offering valuable insights for the wind energy industry.
Juan Felipe Céspedes Moreno, Juan Pablo Murcia León, and Søren Juhl Andersen
Wind Energ. Sci., 10, 597–611, https://doi.org/10.5194/wes-10-597-2025, https://doi.org/10.5194/wes-10-597-2025, 2025
Short summary
Short summary
Using a global base in a proper orthogonal decomposition provides a common base for analyzing flows, such as wind turbine wakes, across an entire parameter space. This can be used to compare flows with different conditions using the same physical interpretation. This work shows the convergence of the global base, its small error compared to the truncation error in the flow reconstruction, and the insensitivity to which datasets are included for generating the global base.
Mohammad Mehdi Mohammadi, Hugo Olivares-Espinosa, Gonzalo Pablo Navarro Diaz, and Stefan Ivanell
Wind Energ. Sci., 9, 1305–1321, https://doi.org/10.5194/wes-9-1305-2024, https://doi.org/10.5194/wes-9-1305-2024, 2024
Short summary
Short summary
This paper has put forward a set of recommendations regarding the actuator sector model implementation details to improve the capability of the model to reproduce similar results compared to those obtained by an actuator line model, which is one of the most common ways used for numerical simulations of wind farms, while providing significant computational savings. This includes among others the velocity sampling method and a correction of the sampled velocities to calculate the blade forces.
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Ville Vakkari, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 9, 821–840, https://doi.org/10.5194/wes-9-821-2024, https://doi.org/10.5194/wes-9-821-2024, 2024
Short summary
Short summary
Knowing the wind speed across the rotor of a wind turbine is key in making good predictions of the power production. However, models struggle to capture both the speed and the shape of the wind profile. Using machine learning methods based on the model data, we show that the predictions can be improved drastically. The work focuses on three coastal sites, spread over the Northern Hemisphere (the Baltic Sea, the North Sea, and the US Atlantic coast) with similar results for all sites.
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 8, 1651–1658, https://doi.org/10.5194/wes-8-1651-2023, https://doi.org/10.5194/wes-8-1651-2023, 2023
Short summary
Short summary
Low-level jets (LLJs) are special types of non-ideal wind profiles affecting both wind energy production and loads on a wind turbine. However, among LLJ researchers, there is no consensus regarding which definition to use to identify these profiles. In this work, we compare two different ways of identifying the LLJ – the falloff definition and the shear definition – and argue why the shear definition is better suited to wind energy applications.
Christoffer Hallgren, Heiner Körnich, Stefan Ivanell, Ville Vakkari, and Erik Sahlée
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-129, https://doi.org/10.5194/wes-2023-129, 2023
Preprint withdrawn
Short summary
Short summary
Sometimes, the wind changes direction between the bottom and top part of a wind turbine. This affects both the power production and the loads on the turbine. In this study, a climatology of pronounced changes in wind direction across the rotor is created, focusing on Scandinavia. The weather conditions responsible for these changes in wind direction are investigated and the climatology is compared to measurements from two coastal sites, indicating an underestimation by the climatology.
Jens N. Sørensen
Wind Energ. Sci., 8, 1017–1027, https://doi.org/10.5194/wes-8-1017-2023, https://doi.org/10.5194/wes-8-1017-2023, 2023
Short summary
Short summary
The paper presents a simple analytical model that, with surprisingly good accuracy, represents the loading for virtually any horizontal axis wind turbine, independent of size and operating regime. The aim of the model is to have a simple tool that may represent the loading of any wind turbine without having access to the details regarding the specific geometry and airfoil data, information that is normally kept confidential by the manufacturer of the turbine.
Gonzalo Pablo Navarro Diaz, Alejandro Daniel Otero, Henrik Asmuth, Jens Nørkær Sørensen, and Stefan Ivanell
Wind Energ. Sci., 8, 363–382, https://doi.org/10.5194/wes-8-363-2023, https://doi.org/10.5194/wes-8-363-2023, 2023
Short summary
Short summary
In this paper, the capacity to simulate transient wind turbine wake interaction problems using limited wind turbine data has been extended. The key novelty is the creation of two new variants of the actuator line technique in which the rotor blade forces are computed locally using generic load data. The analysis covers a partial wake interaction case between two wind turbines for a uniform laminar inflow and for a turbulent neutral atmospheric boundary layer inflow.
Søren Juhl Andersen and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 2117–2133, https://doi.org/10.5194/wes-7-2117-2022, https://doi.org/10.5194/wes-7-2117-2022, 2022
Short summary
Short summary
Simulating the turbulent flow inside large wind farms is inherently complex and computationally expensive. A new and fast model is developed based on data from high-fidelity simulations. The model captures the flow dynamics with correct statistics for a wide range of flow conditions. The model framework provides physical insights and presents a generalization of high-fidelity simulation results beyond the case-specific scenarios, which has significant potential for future turbulence modeling.
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825, https://doi.org/10.5194/wes-7-1791-2022, https://doi.org/10.5194/wes-7-1791-2022, 2022
Short summary
Short summary
The FarmConners benchmark is the first of its kind to bring a wide variety of data sets, control settings, and model complexities for the (initial) assessment of wind farm flow control benefits. Here we present the first part of the benchmark results for three blind tests with large-scale rotors and 11 participating models in total, via direct power comparisons at the turbines as well as the observed or estimated power gain at the wind farm level under wake steering control strategy.
Niels Troldborg, Søren J. Andersen, Emily L. Hodgson, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 1527–1532, https://doi.org/10.5194/wes-7-1527-2022, https://doi.org/10.5194/wes-7-1527-2022, 2022
Short summary
Short summary
This article shows that the power performance of a wind turbine may be very different in flat and complex terrain. This is an important finding because it shows that the power output of a given wind turbine is governed by not only the available wind at the position of the turbine but also how the ambient flow develops in the region behind the turbine.
Christoffer Hallgren, Johan Arnqvist, Erik Nilsson, Stefan Ivanell, Metodija Shapkalijevski, August Thomasson, Heidi Pettersson, and Erik Sahlée
Wind Energ. Sci., 7, 1183–1207, https://doi.org/10.5194/wes-7-1183-2022, https://doi.org/10.5194/wes-7-1183-2022, 2022
Short summary
Short summary
Non-idealized wind profiles with negative shear in part of the profile (e.g., low-level jets) frequently occur in coastal environments and are important to take into consideration for offshore wind power. Using observations from a coastal site in the Baltic Sea, we analyze in which meteorological and sea state conditions these profiles occur and study how they alter the turbulence structure of the boundary layer compared to idealized profiles.
Christoffer Hallgren, Stefan Ivanell, Heiner Körnich, Ville Vakkari, and Erik Sahlée
Wind Energ. Sci., 6, 1205–1226, https://doi.org/10.5194/wes-6-1205-2021, https://doi.org/10.5194/wes-6-1205-2021, 2021
Short summary
Short summary
As wind power becomes more popular, there is a growing demand for accurate power production forecasts. In this paper we investigated different methods to improve wind power forecasts for an offshore location in the Baltic Sea, using both simple and more advanced techniques. The performance of the methods is evaluated for different weather conditions. Smoothing the forecast was found to be the best method in general, but we recommend selecting which method to use based on the forecasted weather.
Mark Kelly, Søren Juhl Andersen, and Ásta Hannesdóttir
Wind Energ. Sci., 6, 1227–1245, https://doi.org/10.5194/wes-6-1227-2021, https://doi.org/10.5194/wes-6-1227-2021, 2021
Short summary
Short summary
Via 11 years of measurements, we made a representative ensemble of wind ramps in terms of acceleration, mean speed, and shear. Constrained turbulence and large-eddy simulations were coupled to an aeroelastic model for each ensemble member. Ramp acceleration was found to dominate the maxima of thrust-associated loads, with a ramp-induced increase of 45 %–50 % plus ~ 3 % per 0.1 m/s2 of bulk ramp acceleration magnitude. The LES indicates that the ramps (and such loads) persist through the farm.
Özge Sinem Özçakmak, Helge Aagaard Madsen, Niels Nørmark Sørensen, and Jens Nørkær Sørensen
Wind Energ. Sci., 5, 1487–1505, https://doi.org/10.5194/wes-5-1487-2020, https://doi.org/10.5194/wes-5-1487-2020, 2020
Short summary
Short summary
Accurate prediction of the laminar-turbulent transition process is critical for design and prediction tools to be used in the industrial design process, particularly for the high Reynolds numbers experienced by modern wind turbines. Laminar-turbulent transition behavior of a wind turbine blade section is investigated in this study by means of field experiments and 3-D computational fluid dynamics (CFD) rotor simulations.
Cited articles
Aagaard Madsen, H., Bak, C., Schmidt Paulsen, U., Gaunaa, M., Fuglsang, P.,
Romblad, J., Olesen, N., Enevoldsen, P., Laursen, J., and Jensen, L.: The
DAN-AERO MW Experiments, Denmark, Forskningscenter Risø.
Risø-R, Danmarks Tekniske Universitet, Risø Nationallaboratoriet for
Bæredygtig Energi, Risø, Denmark, 2010. a
Allaerts, D. and Meyers, J.: Large eddy simulation of a large wind-turbine
array in a conventionally neutral atmospheric boundary layer, Phys. Fluids, 27, 065108, https://doi.org/10.1063/1.4922339, 2015. a
Allaerts, D. and Meyers, J.: Gravity Waves and wind-farm efficiency in neutral
and stable conditions, Bound.-Lay. Meteorol., 166, 269–299,
https://doi.org/10.1007/s10546-017-0307-5, 2018. a
Andersen, S., Sørensen, J., Ivanell, S., and Mikkelsen, R.: Comparison of
engineering wake models with CFD simulations, J. Phys. Conf. Ser., 524, 012161, https://doi.org/10.1088/1742-6596/524/1/012161, 2014. a
Andersen, S., Sørensen, J., Mikkelsen, R., and Ivanell, S.: Statistics of
LES simulations of large wind farms, J. Phys. Conf. Ser., 753, 032002, https://doi.org/10.1088/1742-6596/753/3/032002, 2016. a, b, c
Andersen, S., Sørensen, J., and Mikkelsen, R.: Performance and Equivalent
Loads of Wind Turbines in Large Wind Farms, IOP Publishing, 854, 012001,
https://doi.org/10.1088/1742-6596/854/1/012001, 2017a. a
Andersen, S. J., Sørensen, J. N., and Mikkelsen, R. F.: Turbulence and
entrainment length scales in large wind farms, Philos. T. Roy. Soc. A, 375,
20160107, https://doi.org/10.1098/rsta.2016.0107, 2017b. a, b
Barthelmie, R. J. and Jensen, L. E.: Evaluation of wind farm efficiency and
wind turbine wakes at the Nysted offshore wind farm, Wind Energy, 13,
573–586, https://doi.org/10.1002/we.408. a
Barthelmie, R., Hansen, K., Frandsen, S., Rathmann, O., Schepers, J., Schlez,
W., Phillips, J., Rados, K., Zervos, A., Politis, E., and Chaviaropoulos, P.:
Modelling and measuring flow and wind turbine wakes in large wind farms
offshore, Wind Energy, 12, 431–444, https://doi.org/10.1002/we.348, 2009. a
Bleeg, J., Purcell, M., Ruisi, R., and Traiger, E.: Wind farm blockage and the
consequences of neglecting its impact on energy production, Energies, 11,
en11061609, https://doi.org/10.3390/en11061609, 2018. a
Breton, S.-P., Nilsson, K., Olivares-Espinosa, H., Masson, C., Dufresne, L.,
and Ivanell, S.: Study of the influence of imposed turbulence on the
asymptotic wake deficit in a very long line of wind turbines, Renew. Energ., 70, 153–163, https://doi.org/10.1016/j.renene.2014.05.009, 2014. a
Breton, S.-P., Sumner, J., Sørensen, J. N., Hansen, K. S., Sarmast, S., and Ivanell, S.: A survey of modelling methods for high-fidelity wind farm
simulations using large eddy simulation, Philos. T. Roy. Soc. A, 375, 20160097, https://doi.org/10.1098/rsta.2016.0097, 2017. a
Cal, R. B., Lebrón, J., Castillo, L., Kang, H. S., and Meneveau, C.:
Experimental study of the horizontally averaged flow structure in a model
wind-turbine array boundary layer, J. Renew. Sustain. Ener., 2, 013106, https://doi.org/10.1063/1.3289735, 2010. a
Calaf, M., Meneveau, C., and Meyers, J.: Large eddy simulation study of fully
developed wind-turbine array boundary layers, Phys. Fluids, 22, 015110,
https://doi.org/10.1063/1.3291077, 2010. a, b, c
Deardorff, J.: Stratocumulus-capped mixed layers derived from a
three-dimensional model, Bound.-Lay. Meteorol., 18, 495–527, 1980. a
Denholm, P., Hand, M., Jackson, M., and Ong, S.: Land Use Requirements of
Modern Wind Power Plants in the United States, National Renewable Energy Laboratory, USA, https://doi.org/10.2172/964608, 2009. a
Dimitrov, N., Kelly, M. C., Vignaroli, A., and Berg, J.: From wind to loads: wind turbine site-specific load estimation with surrogate models trained on high-fidelity load databases, Wind Energ. Sci., 3, 767–790, https://doi.org/10.5194/wes-3-767-2018, 2018. a
Dörenkämper, M., Witha, B., Steinfeld, G., Heinemann, D., and Kühn, M.: The
impact of stable atmospheric boundary layers on wind-turbine wakes within
offshore wind farms, J. Wind Eng. Ind. Aerod.,
144, 146–153, https://doi.org/10.1016/j.jweia.2014.12.011, 2015. a, b
Duckworth, A. and Barthelmie, R. J.: Investigation and validation of wind
turbine wake models, Wind Eng., 32, 459–475,
https://doi.org/10.1260/030952408786411912, 2008. a
Frandsen, S.: Turbulence and turbulence-generated structural loading in wind
turbine clusters, risø-R-1188(EN), Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi, Risø, Denmark, 2007. a
Frandsen, S. T.: On the wind speed reduction in the center of large clusters of
wind turbines, J. Wind Eng. Ind. Aerod., 39,
251–265, https://doi.org/10.1016/0167-6105(92)90551-K, 1992. a, b
Hansen, M. H., Hansen, A., Larsen, T. J., Oye, S., Sorensen, P., and
Fuglsang, P.: Control design for a pitch-regulated, variable speed wind
turbine, Danmarks Tekniske Universitet, Risø Nationallaboratoriet for
Bæredygtig Energi, Risø, Denmark, 2005. a
Hansen, M. O. L., Sørensen, J. N., Voutsinas, S., Sørensen, N., and
Madsen: State of the art in wind turbine aerodynamics and aeroelasticity,
Prog. Aerosp. Sci., 42, 285–330, https://doi.org/10.1016/j.paerosci.2006.10.002, 2006. a
Johnstone, R. and Coleman, G.: The turbulent Ekman boundary layer over an
infinite wind-turbine array, J. Wind Eng. Ind. Aerod., 100, 46–57, 2012. a
Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a
5-MW Reference Wind Turbine for Offshore System Development, available at:
https://www.nrel.gov/docs/fy09osti/38060.pdf (last access: 25 November 2020), 2009. a
Larsen, T. and Hanson, T.: A method to avoid negative damped low frequent
tower vibrations for a floating, pitch controlled wind turbine, J. Phys.
Conf. Ser., 75, 012073, https://doi.org/10.1088/1742-6596/75/1/012073, 2007. a
Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F., Keck, M., Ketelsen, K., Letzel, M. O., Sühring, M., and Raasch, S.: The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives, Geosci. Model Dev., 8, 2515–2551, https://doi.org/10.5194/gmd-8-2515-2015, 2015. a, b
Meneveau, C.: Big wind power: seven questions for turbulence research, J. Turbul., 20, 2–20, https://doi.org/10.1080/14685248.2019.1584664, 2019. a
Meyer Forsting, A. and Troldborg, N.: The effect of blockage on power
production for laterally aligned wind turbines, J. Phys.: Conf. Ser., 625,
012029, https://doi.org/10.1088/1742-6596/625/1/012029, 2015. a
Michelsen, J. A.: Basis3D – a Platform for Development of Multiblock PDE
Solvers, Tech. rep., Danmarks Tekniske Universitet, Denmark, 1992. a
Mikkelsen, R., Sørensen, J., and Troldborg, N.: Prescribed wind shear
modelling with the actuator line technique, in: European Wind Energy
Conference, Milan, Italy, 2007. a
Newman, A. J., Drew, D. A., and Castillo, L.: Pseudo spectral analysis of the
energy entrainment in a scaled down wind farm, Renew. Energ., 70,
129–141, https://doi.org/10.1016/j.renene.2014.02.003, 2014. a
Øye, S.: Flex4 simulation of wind turbine dynamics, Danmarks
Tekniske Universitet, Lyngby, Denmark, 71–76, 1996. a
Pena Diaz, A., Réthoré, P.-E., and van der Laan, P.: On the application of
the Jensen wake model using a turbulence-dependent wake decay coefficient:
the Sexbierum case, Wind Energy, 19, 763–776, https://doi.org/10.1002/we.1863, 2016. a
Porté-Agel, F., Bastankhah, M., and Shamsoddin, S.: Wind-turbine and wind-farm
flows: a review, Bound.-Lay. Meteorol., 174, 1–59,
https://doi.org/10.1007/s10546-019-00473-0, 2020. a
Rathmann, O., Frandsen, S., and Nielsen, M.: Wake decay constant for the
infinite wind turbine array, in: European Wind Energy Conference, Warsaw,
Poland, 2010. a
Sarlak, H., Mikkelsen, R., and Sørensen, J.: Comparing wall modeled LES and prescribed boundary layer approach in infinite wind farm simulations, in:
Proc. of 33rd Wind Energy Symposium, AIAA, 5–9 January 2015, Kissimmee, FL, USA, https://doi.org/10.2514/6.2015-1470, 2015. a
Segalini, A. and Dahlberg, J.-A.: Blockage effects in wind farms, Wind Energy,
23, 120–128, https://doi.org/10.1002/we.2413, 2020. a
Sørensen, J., Mikkelsen, R., Henningson, D., Ivanell, S., Sarmast, S., and
Andersen, S.: Simulation of wind turbine wakes using the actuator line
technique, Philos. T. Roy. Soc. A, 373, 2035, https://doi.org/10.1098/rsta.2014.0071, 2015. a, b
Sørensen, J. N. and Shen, W. Z.: Numerical modelling of Wind Turbine
Wakes, J. Fluids Eng., 124, 393–399, https://doi.org/10.1115/1.1471361, 2002. a
Sørensen, N. N.: General Purpose Flow Solver Applied to Flow over Hills,
PhD thesis, Technical University of Denmark, Denmark, 1995. a
Stevens, R.: Dependence of optimal wind turbine spacing on wind farm length,
Wind Energy, 19, 651–663, 2016. a
Stevens, R. J. and Meneveau, C.: Flow Structure and Turbulence in Wind Farms,
Annu. Rev. Fluid Mech., 49, 311–339,
https://doi.org/10.1146/annurev-fluid-010816-060206, 2017. a
Troldborg, N.: Actuator Line Modeling of Wind Turbine Wakes, Ph.D. thesis,
DTU Mechanical Engineering, Technical University of Denmark, DTU,
Kgs. Lyngby, Denmark, 2008. a
Troldborg, N., Sørensen, J. N., Mikkelsen, R., and Sørensen, N. N.: A
simple atmospheric boundary layer model applied to large eddy simulations of
wind turbine wakes, Wind Energy, 17, 657–669, https://doi.org/10.1002/we.1608, 2014. a
Turner V, J. J. and Wosnik, M.: Wake meandering in a model wind turbine array in a high Reynolds number turbulent boundary layer, J. Phys. Conf. Ser., 1452, 012073, https://doi.org/10.1088/1742-6596/1452/1/012073, 2020. a
Witha, B., Steinfeld, G., and Heinemann, D.: High-Resolution Offshore
Wake Simulations with the LES Model PALM, in: Wind Energy – Impact of Turbulence, edited by: Hölling, M., Peinke, J., and Ivanell, S., Research Topics in Wind Energy 2, Springer, Berlin, Heidelberg, 175–181,
https://doi.org/10.1007/978-3-642-54696-9_26, 2014. a
Wu, K. and Porté-Agel, F.: Flow adjustment inside and around large
finite-size wind farms, Energies, 10, 2164, https://doi.org/10.3390/en10122164, 2017. a
Wu, Y. and Porté-Agel, F.: Simulation of turbulent flow inside and above wind farms: model validation and layout effects, Bound.-Lay. Meteorol., 146,
181–205, 2013. a
Wu, Y. T., Liao, T. L., Chen, C. K., Lin, C. Y., and Chen, P. W.: Power output efficiency in large wind farms with different hub heights and configurations, Renew. Energ., 132, 941–949, https://doi.org/10.1016/j.renene.2018.08.051, 2019. a
Yang, X. and Sotiropoulos, F.: LES investigation of infinite staggered
wind-turbine arrays, J. Phys. Conf. Ser., 555, 012109,
https://doi.org/10.1088/1742-6596/555/1/012109, 2014. a
Yang, X., Kang, S., and Sotiropoulos, F.: Computational study and modeling of
turbine spacing effects in infinite aligned wind farms, Phys. Fluids,
24, 115107, https://doi.org/10.1063/1.4767727, 2012. a
Short summary
The complexity of wind farm operation increases as the wind farms get larger and larger. Therefore, researchers from three universities have simulated numerous different large wind farms as part of an international benchmark. The study shows how simple engineering models can capture the general trends, but high-fidelity simulations are required in order to quantify the variability and uncertainty associated with power production of the wind farms and hence the potential profitability and risks.
The complexity of wind farm operation increases as the wind farms get larger and larger....
Altmetrics
Final-revised paper
Preprint