Articles | Volume 5, issue 4
Wind Energ. Sci., 5, 1689–1703, 2020
https://doi.org/10.5194/wes-5-1689-2020
Wind Energ. Sci., 5, 1689–1703, 2020
https://doi.org/10.5194/wes-5-1689-2020

Research article 07 Dec 2020

Research article | 07 Dec 2020

Global trends in the performance of large wind farms based on high-fidelity simulations

Søren Juhl Andersen et al.

Related authors

Statistical impact of wind-speed ramp events on turbines, via observations and coupled fluid-dynamic and aeroelastic simulations
Mark Kelly, Søren Juhl Andersen, and Ásta Hannesdóttir
Wind Energ. Sci., 6, 1227–1245, https://doi.org/10.5194/wes-6-1227-2021,https://doi.org/10.5194/wes-6-1227-2021, 2021
Short summary
Analytical model for the power–yaw sensitivity of wind turbines operating in full wake
Jaime Liew, Albert M. Urbán, and Søren Juhl Andersen
Wind Energ. Sci., 5, 427–437, https://doi.org/10.5194/wes-5-427-2020,https://doi.org/10.5194/wes-5-427-2020, 2020
Short summary
Optimizing wind farm control through wake steering using surrogate models based on high-fidelity simulations
Paul Hulsman, Søren Juhl Andersen, and Tuhfe Göçmen
Wind Energ. Sci., 5, 309–329, https://doi.org/10.5194/wes-5-309-2020,https://doi.org/10.5194/wes-5-309-2020, 2020
Short summary
Brief communication: Wind-speed-independent actuator disk control for faster annual energy production calculations of wind farms using computational fluid dynamics
Maarten Paul van der Laan, Søren Juhl Andersen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 4, 645–651, https://doi.org/10.5194/wes-4-645-2019,https://doi.org/10.5194/wes-4-645-2019, 2019
Short summary
Power curve and wake analyses of the Vestas multi-rotor demonstrator
Maarten Paul van der Laan, Søren Juhl Andersen, Néstor Ramos García, Nikolas Angelou, Georg Raimund Pirrung, Søren Ott, Mikael Sjöholm, Kim Hylling Sørensen, Julio Xavier Vianna Neto, Mark Kelly, Torben Krogh Mikkelsen, and Gunner Christian Larsen
Wind Energ. Sci., 4, 251–271, https://doi.org/10.5194/wes-4-251-2019,https://doi.org/10.5194/wes-4-251-2019, 2019
Short summary

Related subject area

Wind and turbulence
The smoother the better? A comparison of six post-processing methods to improve short-term offshore wind power forecasts in the Baltic Sea
Christoffer Hallgren, Stefan Ivanell, Heiner Körnich, Ville Vakkari, and Erik Sahlée
Wind Energ. Sci., 6, 1205–1226, https://doi.org/10.5194/wes-6-1205-2021,https://doi.org/10.5194/wes-6-1205-2021, 2021
Short summary
Statistical impact of wind-speed ramp events on turbines, via observations and coupled fluid-dynamic and aeroelastic simulations
Mark Kelly, Søren Juhl Andersen, and Ásta Hannesdóttir
Wind Energ. Sci., 6, 1227–1245, https://doi.org/10.5194/wes-6-1227-2021,https://doi.org/10.5194/wes-6-1227-2021, 2021
Short summary
Probabilistic estimation of the Dynamic Wake Meandering model parameters using SpinnerLidar-derived wake characteristics
Davide Conti, Nikolay Dimitrov, Alfredo Peña, and Thomas Herges
Wind Energ. Sci., 6, 1117–1142, https://doi.org/10.5194/wes-6-1117-2021,https://doi.org/10.5194/wes-6-1117-2021, 2021
Short summary
Recovery processes in a large offshore wind farm
Tanvi Gupta and Somnath Baidya Roy
Wind Energ. Sci., 6, 1089–1106, https://doi.org/10.5194/wes-6-1089-2021,https://doi.org/10.5194/wes-6-1089-2021, 2021
Short summary
Extreme wind shear events in US offshore wind energy areas and the role of induced stratification
Mithu Debnath, Paula Doubrawa, Mike Optis, Patrick Hawbecker, and Nicola Bodini
Wind Energ. Sci., 6, 1043–1059, https://doi.org/10.5194/wes-6-1043-2021,https://doi.org/10.5194/wes-6-1043-2021, 2021
Short summary

Cited articles

Aagaard Madsen, H., Bak, C., Schmidt Paulsen, U., Gaunaa, M., Fuglsang, P., Romblad, J., Olesen, N., Enevoldsen, P., Laursen, J., and Jensen, L.: The DAN-AERO MW Experiments, Denmark, Forskningscenter Risø. Risø-R, Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi, Risø, Denmark, 2010. a
Allaerts, D. and Meyers, J.: Large eddy simulation of a large wind-turbine array in a conventionally neutral atmospheric boundary layer, Phys. Fluids, 27, 065108, https://doi.org/10.1063/1.4922339, 2015. a
Allaerts, D. and Meyers, J.: Gravity Waves and wind-farm efficiency in neutral and stable conditions, Bound.-Lay. Meteorol., 166, 269–299, https://doi.org/10.1007/s10546-017-0307-5, 2018. a
Andersen, S., Sørensen, J., Ivanell, S., and Mikkelsen, R.: Comparison of engineering wake models with CFD simulations, J. Phys. Conf. Ser., 524, 012161, https://doi.org/10.1088/1742-6596/524/1/012161, 2014. a
Andersen, S., Witha, B., Breton, S.-P., Sørensen, J., Mikkelsen, R., and Ivanell, S.: Quantifying variability of Large Eddy Simulations of very large wind farms, J. Phys. Conf. Ser., 625, 012027, https://doi.org/10.1088/1742-6596/625/1/012027, 2015. a, b, c, d, e, f
Download
Short summary
The complexity of wind farm operation increases as the wind farms get larger and larger. Therefore, researchers from three universities have simulated numerous different large wind farms as part of an international benchmark. The study shows how simple engineering models can capture the general trends, but high-fidelity simulations are required in order to quantify the variability and uncertainty associated with power production of the wind farms and hence the potential profitability and risks.