Articles | Volume 6, issue 4
Wind Energ. Sci., 6, 1061–1077, 2021
https://doi.org/10.5194/wes-6-1061-2021
Wind Energ. Sci., 6, 1061–1077, 2021
https://doi.org/10.5194/wes-6-1061-2021

Research article 16 Aug 2021

Research article | 16 Aug 2021

Vertical-axis wind-turbine computations using a 2D hybrid wake actuator-cylinder model

Edgar Martinez-Ojeda et al.

Related subject area

Aerodynamics and hydrodynamics
Maximal power per device area of a ducted turbine
Nojan Bagheri-Sadeghi, Brian T. Helenbrook, and Kenneth D. Visser
Wind Energ. Sci., 6, 1031–1041, https://doi.org/10.5194/wes-6-1031-2021,https://doi.org/10.5194/wes-6-1031-2021, 2021
Short summary
How realistic are the wakes of scaled wind turbine models?
Chengyu Wang, Filippo Campagnolo, Helena Canet, Daniel J. Barreiro, and Carlo L. Bottasso
Wind Energ. Sci., 6, 961–981, https://doi.org/10.5194/wes-6-961-2021,https://doi.org/10.5194/wes-6-961-2021, 2021
Short summary
Response of the International Energy Agency (IEA) Wind 15 MW WindCrete and Activefloat floating wind turbines to wind and second-order waves
Mohammad Youssef Mahfouz, Climent Molins, Pau Trubat, Sergio Hernández, Fernando Vigara, Antonio Pegalajar-Jurado, Henrik Bredmose, and Mohammad Salari
Wind Energ. Sci., 6, 867–883, https://doi.org/10.5194/wes-6-867-2021,https://doi.org/10.5194/wes-6-867-2021, 2021
Short summary
A simplified model for transition prediction applicable to wind-turbine rotors
Thales Fava, Mikaela Lokatt, Niels Sørensen, Frederik Zahle, Ardeshir Hanifi, and Dan Henningson
Wind Energ. Sci., 6, 715–736, https://doi.org/10.5194/wes-6-715-2021,https://doi.org/10.5194/wes-6-715-2021, 2021
Short summary
Experimental investigation of wind turbine wake and load dynamics during yaw maneuvers
Stefano Macrí, Sandrine Aubrun, Annie Leroy, and Nicolas Girard
Wind Energ. Sci., 6, 585–599, https://doi.org/10.5194/wes-6-585-2021,https://doi.org/10.5194/wes-6-585-2021, 2021
Short summary

Cited articles

Abkar, M.: Impact of Subgrid-Scale Modeling in Actuator-Line Based Large-Eddy Simulation of Vertical-Axis Wind Turbine Wakes, Atmosphere, 9, 257, https://doi.org/10.3390/atmos9070257, 2018. a
Abkar, M.: Theoretical Modeling of Vertical-Axis Wind Turbine Wakes, Energies, 12, 10, https://doi.org/10.3390/en12010010, 2019. a
Araya, D., Craig, A., Kinzel, M., and Dabiri, J.: Low-order modeling of wind farm aerodynamics using leaky Rankine bodies, J. Renew. Sustain. Energ., 6, 063118-1–063118-20, https://doi.org/10.1063/1.4905127, 2014. a, b, c, d, e, f
Bachant, P., Goude, P., and Wosnik, M.: Actuator line modeling of vertical-axis turbines, Physics – Fluid Dynamics, Center for Ocean Renewable Energy, University of New Hampshire, Durham, NH, USA, 2018. a
Bardina, J., Huang, P., and Coakley, T.: Turbulence Modeling Validation, Testing, and Development, Tech. rep., National Aeronautics and Space Administration, Ames Research Center, National Technical Information Service, https://doi.org/10.2514/6.1997-2121, 1997. a
Download
Short summary
A model for computing vertical-axis wind turbine farms was developed using computational fluid dynamics open-source software. This model has the potential of evaluating wind farm configurations which can lead to a higher annual energy yield. Such configurations have not been studied thoroughly due to the fact that most analysis tools are computationally expensive. This model can also be run in personal computers within a matter of minutes or hours depending on the number of turbines.